2 research outputs found

    An Integrated Model for Direct Illumination, Subsurface Scattering, Specular Highlights and Shadow Computation

    Get PDF
    In this thesis, we present an integrated model to compute direct illumination, subsurface scattering, specular highlights and soft shadow effects in a single equation. Using this model, it is possible to obtain various effects in a qualitatively consistent way even with a single light. The model is tested for rendering bas-reliefs, i.e. height fields under both single light and environment illumination. The model is implemented as a web-based program using WebGL. Using our system, users can see rendered results in real time even while modifying shader parameters, because of GPU rendering and computational simplicity of our integrated model

    Web-Based Dynamic Paintings: Real-Time Interactive Artworks in Web Using a 2.5D Pipeline

    Full text link
    In this work, we present a 2.5D pipeline approach to creating dynamic paintings that can be re-rendered interactively in real-time on the Web. Using this 2.5D approach, any existing simple painting such as portraits can be turned into an interactive dynamic web-based artwork. Our interactive system provides most global illumination effects such as reflection, refraction, shadow, and subsurface scattering by processing images. In our system, the scene is defined only by a set of images. These include (1) a shape image, (2) two diffuse images, (3) a background image, (4) one foreground image, and (5) one transparency image. A shape image is either a normal map or a height. Two diffuse images are usually hand-painted. They are interpolated using illumination information. The transparency image is used to define the transparent and reflective regions that can reflect the foreground image and refract the background image, both of which are also hand-drawn. This framework, which mainly uses hand-drawn images, provides qualitatively convincing painterly global illumination effects such as reflection and refraction. We also include parameters to provide additional artistic controls. For instance, using our piecewise linear Fresnel function, it is possible to control the ratio of reflection and refraction. This system is the result of a long line of research contributions. On the other hand, the art-directed Fresnel function that provides physically plausible compositing of reflection and refraction with artistic control is completely new. Art-directed warping equations that provide qualitatively convincing refraction and reflection effects with linearized artistic control are also new. You can try our web-based system for interactive dynamic real-time paintings at http://mock3d.tamu.edu/.Comment: 22 page
    corecore