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ABSTRACT

In this thesis, we present an integrated model to compute direct illumination, subsur-

face scattering, specular highlights and soft shadow effects in a single equation. Using

this model, it is possible to obtain various effects in a qualitatively consistent way even

with a single light. The model is tested for rendering bas-reliefs, i.e. height fields under

both single light and environment illumination. The model is implemented as a web-based

program using WebGL. Using our system, users can see rendered results in real time even

while modifying shader parameters, because of GPU rendering and computational sim-

plicity of our integrated model.
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NOMENCLATURE

2D Two Dimensional

3D Three Dimensional

CG Computer Graphics

NPR Non-Photorealistic Rendering

RGBN Red, Green, Blue and Normal

SFS Shape From Shading

BSDF Bidirectional Scatter Distribution Function

BRDF Bidirectional Reflectance Distribution Function

BTDF Bidirectional Transmittance Distribution Function

BSSRDF Bidirectional Surface Scattering Reflectance Distribu-
tion Function
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1. INTRODUCTION AND MOTIVATION

1.1 Introduction

This thesis presents an integrated model for qualitatively consistent rendering of height

fields that represent bas-reliefs. Various effects such as cos Θ, reflections, subsurface scat-

tering and soft shadows are computed using an integrated technique that provides qual-

itatively similar results. The system is implemented in a web environment that supports

real-time computations. This model also provides artistic control over these effects. Using

interactive lighting and artistic controls, users can tailor the rendering result based on their

artistic requirements.

1.2 Motivation

During the last several decades many models for rendering have been developed to em-

ulate illumination effects such as direct illumination, shadows and subsurface scattering.

However, these models are not really consistent with each other since each model relies on

a different type of simplification. Because of this inconsistency, it is hard to combine these

effects for obtaining qualitatively consistent results. In practice, this problem is covered by

using more and more lights. This is not really recommended since it is better to use a few

lights as interface controls to obtain desired results. There is, therefore, a need for a simple

method that can produce qualitatively consistent results for a wide variety of effects. This

works demonstrates the power of a new model that produces results qualitatively similar

to cos Θ computations and provides better control over them even with one light.

1



2. LITERATURE REVIEW

2.1 Normal Maps

Normal maps are images that are generally used to define smaller details on top of low

polygon. As per Johnston [1], normal maps can also be used to identify the shape of the

object through each pixel in the 2D image for a cel-based animation scene. This could

help us create shadows in the image as if it were in a 3D environment. The goal of the

technique is not accuracy according to Johnston, but convincing illumination over surfaces

that change over time in a live action scene. This method would avoid the time-consuming

task of creating 3D geometry for all objects in the animation scene. Building on Johnston’s

work, Bezerra, Feijo and Velho [2] propose an image-based technique that would handle

the environment reflections on a 2D surface in a scene. Bezerra et al. suggests that their

approach is more intuitive than Johnston’s approach because they use the 2D image as is

without vector conversion, and that the vectorization of the image as suggested by Johnston

would be difficult for artists to use. While Johnston’s work identify the normal maps

using the edge information and gradients, Shao, Bousseau, Sheffer and Singh [3] create

normal maps by using cross sections of the 2D image. The cross section network drawn

by the artist in a concept art can be used to detect the normals with the help of perception

calculations. Even though this tool is very effective in converting concept sketches by

artists into 3D designs, this only works if the concept sketch is non-orthogonal. If the

concept sketch is drawn orthogonally, Shao et al. algorithm might give wrongly deformed

projections. Another technique suggested by Okabe, Zeng, Matsushita, Igarashi, Quan

and Shum [4] make use of normal maps in photography. Okabe et al. allows the artist to

paint normal maps over a photograph that will be given as an input to their algorithm to

manipulate lighting in each pixel. Although these approaches help in creating a 3D looking

2



environment, they compute the 3D shading components separately in an inconsistent way

and combine them to create a consistent look. Also, subsurface scattering and soft shadows

aren’t addressed in these solutions.

2.2 Normal Maps with Diffuse and Shape

Toler-Franklin, Finkelstein and Rusinkiewicz [5] make use of a datatype that falls in

between 2D RGB (Red, Blue and Green) image and a full 3D mesh, called RGBN (Red,

Blue, Green and Normal). Each pixel in RGBN has information on both the color and

surface normal that are leveraged to create non-photorealistic illustrations. This technique

allows multiple objects in a 2D scene, because color and normal information is stored per

pixel basis. Stylized effects like toon shading and line drawing is possible in this technique,

however, if the image is dark or highly specular, it is not possible to obtain proper normal

information. Moreover cast shadows are not possible because the depth information is not

present. Wang [6] elaborates a technique where he combines normal maps with thickness

maps and displacement maps. The combination is called shape maps that can be used to

create "fuzzy geometry". Fuzzy geometry allows the creation of impossible shapes in the

2D scene. There are different methods in which the input image could be provided to

this framework. Artists can directly create shape maps using 2D tools like Photoshop or

upload a photograph. An intuitive approach is used for creating shape maps. The artist

has to imagine a parallel directional red light from the left and a parallel green light from

the top. Based on the 3D object, the artist paints how much of red and green light falls on

each pixel. The framework doesn’t require all three maps to create a fake 3D scene, so it

works even if some of the maps are not provided. Unlike Toler-Franklin et al.’s approach,

the scene could also be layered as billboards or just a single layer could be used. Xiong [7]

enhanced the shape mapping technique by creating a web-based application that provides

artistic controls for lights, reflection, refractions and ambient occlusion. The tool also

3



allows artists to render impossible shapes in real-time, which cannot be modeled in 3D.

Although these approaches uses cos Θ, the above two techniques do not handle consistent

shadow calculation and subsurface scattering in the scene.

2.3 Bas Reliefs

Bas relief is another approach used to create illuminated 3D looking surfaces. Bas

reliefs can be found in ancient wall sculptures and coins. Wu, Martin, Rosin, Sun, Lai, Liu

and Wallraven [8] propose a method where the 3D shape of a 2D image can be extracted

by using photometric stereo. The image is lit under different lighting conditions and then

rendered using NPR (non-photorealistic rendering). Sỳkora, Kavan, Čadík, Jamriška, Ja-

cobson, Whited, Simmons and Sorkine-Hornung [9] creates a framework called ink and

ray, that automatically generates approximate 3D geometry from 2D images, just enough

to create global illumination effects and consistent lighting in the scene. This geometry

will give the impression of 3D in the scene. The ink and ray approach makes approxi-

mations of the image depth when making the proxy 3D mesh. This might be a limitation

because such unreal approximations could sometimes be smaller or larger than the actual

desired depth, because depth information is extracted from only one image given as input

from one angle. While the approaches suggested by Wu et al and Sỳkora et al. address

self-shadowing and reflections, these techniques are only applicable for human faces and

character portraits.

2.4 Shadow Computation

Wu, Martin, Rosin, Sun, Langbein, Lai, Marshall and Liu [10] present a Shape from

Shading (SFS) method for creating bas-reliefs for human portraits, which makes bas-

reliefs from the shading of the image, given a known set of light direction and material

behavior. While the enhanced method helps suppress smaller details and emphasizes the

important features of a face, lot of specular information is lost in the process. While Wu

4



et al. provides a bas relief solution for human faces, [9] present the use of bas relief in

creating 3D looking images with just one input image, eliminating the necessity of cre-

ating multiple images as suggested by Wu et al. Governi, L., Carfagni, M., Furferi, R.,

Puggelli, L., and Volpe, Y. [11] suggests a SFS algorithm that constructs digital bas-reliefs

from a single image. The method recreates the bas-reliefs with user provided boundary

conditions as initialization and then running a SFS-based reconstruction algorithm. The

main limitation that this method runs into is an over-smoothing effect.

2.5 Other Methods

A 2D scene could also be imagined to be an elastic cloth, where the artists could

fix points on the cloth and elongate/contract the cloth in other regions, to define the sur-

face signals, as suggested by Ritschel, Thormählen, Dachsbacher, Kautz and Seidel [12].

Ritschel et al. provides an interactive framework where artists can achieve artistic results

even though they are physically accurate. 3D shading components like soft shadows and

indirect illumination that are not addressed by Toler-Franklin et al. are solved in the ap-

proach by Ritschel et al.

5



3. COMPUTATION METHODOLOGY

Shading is fundamental in the process of conveying a three-dimensional structure for

an object in a two dimensional image [13]. Over the years, many methods have been sug-

gested for rendering diffuse, shadows and scattering with traditional and distributed ray

tracing techniques. They use 3D scene information like normals, object boundaries and

material properties to render realistic and non-realistic images. While a lot of techniques

use calculations that are physically accurate, we present an integrated system that pro-

duces results that are much simpler to render. This model computes diffuse, soft shadows

and subsurface scattering with height fields that look qualitatively consistent with cos θ

shading.

3.1 Height Fields

Height fields are images that store height information of the scene (See Figure 3.2). A

height map holds values at every point in the range [0, 1], 1 being the highest point and

0 being the lowest point in the scene. Unlike normal maps, height maps are relative i.e.

adding a higher point in the scene would change the values of all other points in the map.

Height fields can be generated from normal maps by computing the relative height at each

point. Apart from this method, 3D manipulation tools can be used to calculate height maps

in a scene.

3.1.1 Visualization of Height Fields

To better understand height fields, we can visualize a height field in 1-Dimension as

shown in Figure 3.1 a. The color smoothly transitions from bright to dark from the tallest

to the shortest point. The tallest point is indicated using the arrow. Now in Figure 3.1 b,

we can see that a new height point is added that is taller than the existing points. Now, that

6



(a) Height field. (b) New height point added to Height field.

Figure 3.1: Visualization of Height Fields in 1-Dimension.

becomes the brightest point and the shorter points scale themselves between the white and

black color range smoothly.

3.1.2 Height Fields from 3D scenes

Using 3D manipulation tools like Maya, height fields can be generated that are more

accurate than the height fields created using normal maps method explained above. This

method results in more accurate height fields because the actual 3D model is used. The

models of Buddha, Lucy and Dragon have been downloaded from Stanford Computer

Graphics Laboratory [14]. The height fields shown in Figure 3.2) have been generated

using Maya. We created a simple depth shader adapting an example from Autodesk Maya

Help [15] that stores the height or z-depth information at each point and normalize it later

based on the highest and lowest z-depth values. More examples of height fields generated

using this method is shown in Figure 3.3)

3.1.3 Height Fields from Normal Maps

Height fields can be generated from Normal Maps. The relative height at a point can

be measured by taking its derivative. For calculating the relative height at point pN , we

7



(a) Buddha. (b) Lucy.

Figure 3.2: Examples of Generated Height Maps using 3D tool.

travel from point p0 towards pN and calculate the change in height that happens along

the way. Since the path to pN differs based on the starting point, a height field calculated

from p0 will be different from a height field calculated from p′0. This method generates

successful results when using simpler objects but fails when using complex scenes. Since

height field generation is not the research problem this thesis is focusing on, this could be

an opportunity for research in future work.

3.2 Scattering

Bartell, Dereniak, and Wolfe [16] introduce BSDF (Bidirectional Scattering Distribu-

tion Function) as a generalized function that defines how light is scattered by a surface.

This function can be split into a reflected component, BRDF (Bidirectional Reflectance

Distribution Function) and a transmitted component, BTDF (Bidirectional Transmittance

Distribution Function). In this thesis, we present an integrated function that takes a similar

approach for calculating diffuse, scattering and reflectance. Figure 3.4 shows how light is

8



(a) Dragon. (b) Skull.

Figure 3.3: More examples of Generated Height Maps.

scattered and transmitted on a surface.

3.2.1 Diffuse Scattering

As shown in 3.5 b, diffuse scattering is when light gets reflected in all directions from

the surface. Diffuse can be measured by calculating the amount of illumination or diffuse

scattering d.

3.2.1.1 Model for Computing Illumination

According to our model, the amount of illumination at a point is inversely proportional

to the amount of light being blocked by other points in the scene. So, the diffuse or

illumination factor d can be calculated by measuring the length of the light ray traveling

above the height field. A higher point will have less hindrance so it will have a higher

diffuse factor, which means that the peak will have full illumination. As shown in Figure

3.6, point A is a peak and point B is a dip. The points from region C to B will have smooth

gradient of increasing illumination.

9



Figure 3.4: BSDF Function.

Let pL denote the position of a point light and, let pS and ~nS denote the position and

the normal vector of a given shading point on a surface. We define a new shading position

under the surface as p′S = pS − t~nS . Let L(pL,p
′
S) denote the line segment that starts

from p′S and ends at pL and let r denote the length of L(pL,p
′
S) goes through inside of

the shapes. Then, the contribution of the illumination is computed simply as d = r/t (See

Figure 3.7).

10



(a) cos θ. (b) Diffuse Scatter.

Figure 3.5: cos θ and diffuse scatter calculated using one integrated equation.

Figure 3.6: Illumination at different regions of Height field.

3.2.1.2 Qualitative Similarity with cos θ

This model works because it provides results qualitatively similar to existing shading

models. Even though the computations in this model are different from traditional tech-

niques, they provide qualitatively consistent visual results. We base this on qualitative

similarity concept introduced by Forbus et al [17]. Let Qx : D → R and Qy : D → R

denote functions x = Qx(v) and y = Qy(v) where v ∈ D denote any given domain and

x, y ∈ R denote real numbers. They, then, say Qx and Qy are qualitatively proportional

to each other if there exists a monotonically increasing mapping y = f(x). One advan-

11



(a) cos Θ. (b) Subsurface Shadow.

Figure 3.7: Integrated Computation of the direct illumination and shadow.

tage of this formulation, there is no need to explicitly derive the monotonically increasing

function f . This has been explained in detail in Wang’s thesis [6].

Let the shading surface be a plane, then it is easy to demonstrate that d = r/t gives

us cos θ regardless of dt (See Figure 3.7a). Note that the equation is valid only for (pL −

p′S) · ~nS > t where · denotes dot product since the light cannot be inside of the object.

Moreover, even if the surface is not planar, when lim t→ 0, it still provides cos θ.

3.2.1.3 Qualitative Similarity with shadows

Shadow is the one that produces inconsistencies. In computer graphics we have two

different sources of shadow: (1) Self-shadows of convex shapes that are identified as

cos θ < 0 regions; and (2) other shadows that are identified by occlusion of the light

by other objects and other parts of the same but non-convex object. Note that our new

model actually combine both cases in one equation as shown in Figure 3.7b where r1 is

qualitatively similar the first type shadows and r2 is qualitatively similar to second type of

shadows and r = r1 + r2 logically combines both.

3.2.1.4 Illumination Computation Algorithm

The algorithm defined here will provide the illumination at a shading point p′S using

the height field information at that point and all points along the length of the line segment

12



L(pL,p
′
S).

Algorithm 1 Algorithm to calculate the illumination at a point
Data: Light position pL, Shading position p′S

Result: Illumination or Diffuse factor d

t←− 1

foreach point p on line segment L(pL,p
′
S) such that p′S ≤ p ≤ pL do

if Height(p′S) < Height(p) then
t←− t + 1

end

end

d←− 1

t

return d

The color cS at position p′S will be then determined as,

cS = d cD cL

where cD is the diffuse color and cL is the color of light.

3.2.2 Diffuse using Environment Lighting

Instead of using just a single lighting source, an environment sphere can also be used

to create bas-reliefs (See Figure 3.8). The algorithm above can be used to imitate an

environment lighting model. Either an array of colors could be manually provided or an

image could be mapped in a sphere to imitate a realistic lighting setup.

As shown in Figure 3.9, a 2D texture map position tmap(u,v) can be mapped on to a
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Figure 3.8: Illumination with an Environment Lighting setup.

sphere position p′L(x,y, z) using its parametric coordinates,

x = r cos θ sinφ

y = r sin θ sinφ

z = r cosφ

where r is the radius of the sphere, θ is the angle from the Z axis between 0 ≤ θ ≤ π

and φ is the angle from the X axis between 0 ≤ φ ≤ 2π. The values of θ and φ are

calculated as,

θ = πu + θoffset

φ = 2πv + φoffset

where θoffset and φoffset are offset values that determine the rotation of the sphere.

Each of the new light position p′L calculated using the spherical coordinates will now

be considered as a separate single light source and illumination at that point is calculated

using Algorithm 1.
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Figure 3.9: Texture mapping onto a sphere.

cS =
∑

(ui,vi)∈tmap

d cD c′L(ui, vi)

where c′L(ui, vi) is the light color, cD is the diffuse color and d is the illumination at

point p′L.

The color c′S at shading position p′S will be then determined using,

c′S =
cS

s

where s is the number of light samples from the environment map.
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3.3 Base Color and Light Color

In the above sections, we introduced the algorithm for illumination using a single and

environment light source and how the final color is then determined using the illumination

factor. In addition to the light colors, base material properties such as color can also be set

that will be blended with the light based on the illumination factor. Without a base color,

the less illuminated regions will be assumed to be black while the brighter regions will be

affected by the light color. Let the light color be cL, diffuse color be cD and base color be

cB. Then, the color is calculated as,

cS = cB + d cD cL

3.3.1 Subsurface Scattering

Subsurface scattering is the light transport within a translucent object where the light

penetrates the object and interacts with the material. To render translucent surfaces,

Jensen’s BSSRDF (Bidirectional Subsurface Scattering Distribution Function) model [18]

uses photon maps to simulate subsurface scattering. The light is distributed uniformly in

all directions using photons in a distributed ray tracer. Even though the results are physi-

cally accurate, the render time becomes extremely slow.

The algorithm explained here uses BSDF (Bidirectional Scattering Distribution Func-

tion) for calculating subsurface scattering. As long as the results are qualitatively consis-

tent, physically accurate calculations can be replaced with simpler methods that simulate

subsurface scatter. As shown in Figure 3.7 b, the shading position p′S is computed in a

way that it is under the surface of the actual height field. This gives an effect as though the

light is traveling inside the object. Upon further research, this method can produce even

more accurate results with more ways to control it.
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3.3.1.1 Forward Scattering

As shown in Figure 3.10, light travels all the way through the skin and exits on the

other side. Forward scattering is important in simulating subsurface scattering and this

effect is implemented in our model. This effect is visible when light is behind the ob-

ject. The scattering factor would be the cosine of the angle between the light ray and eye

direction. So, as light moves away, the effect of the scattered light becomes lesser and

lesser and there is a smooth falloff. This is demonstrated in Figure 3.11 a and 3.11 b.

This illustrations shows that when light moves in front of the object, then cosφ becomes

negative and hence no forward scattering is visible.

Figure 3.10: Subsurface scattering effect in human skin.

Let a light ray from shading position p′S to light pL be ~lS . It is calculated as,

~lS = pL − p′S
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l̂S =
~lS

|~lS|

Let the eye direction from eye position pE to shading position p′S as shown in 3.11

be ~vS ,

~vS = p′S − pE

v̂S =
~vS
|~vS|

So, the scattering factor f is calculated as,

f = F (v̂S · l̂S)

where v̂S is the eye direction, l̂S is the light ray and function F() can be used to control

the cosine curve using one or more controls.
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(a) Calculating scatter factor.

(b) Scatter factor decreases as φ increases.

Figure 3.11: Calculating forward scattering.
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3.3.1.2 Qualitative Similarity with Subsurface Scattering

Exponential attenuation due to scattering along a path can be given as e−ax where a is

a positive real based on subsurface scattering property of the object material and x is the

total length of the path inside of the object. The total scattering effect can be computed as

an integral of exponential attenuation of all possible paths between the two points L(pL

and pS). Without loss of generality, we can assume that the total scattering is qualitatively

similar e−ar where r is the length ofL(pL,p
′
S) goes through inside of the shapes as before.

Based on this assumption, it is easy to show that e−ar and t/r are qualitatively similar for

all positive a values.

3.4 Specular Highlights

Reflection is the return of light back into the same medium after striking a boundary

between two mediums. Reflection happens based the object’s reflective properties. As per

law of reflection for specularity, the angle of incidence of a light ray is equal to the angle

of reflection. The shininess of an object depends on its material properties. A shiny object

like a ball bearing is more reflective than a piece of cloth. The reflected ray is calculated

as ~r = ~v + 2(n̂ · ~v)n̂ where ~v is the incident ray and n̂ is the surface normal.
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(a) Calculating specular factor.

(b) Specularity factor decreases as θ increases.

Figure 3.12: Calculating specularity.

Let the incident ray from eye position pE to shading position p′S be ~vS .
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~vS = p′S − pE

The surface normal ~nS at a shading point can be calculated approximately from the

height field information by finding the difference between the heights of the previous and

next shading points.

~nS = Height(p′S−1)−Height(p′S+1)

The normalized surface normal n̂S is,

n̂S =
~nS

|~nS|

The reflected ray ~rS is calculated with ~vS and n̂S as,

~rS = −~vS + 2(n̂S · ~vS)n̂S

Let a light ray from shading position p′S to light pL be ~lS . It is calculated as,

~lS = pL − p′S

l̂S =
~lS

|~lS|

With reflected ray ~rS and light ray l̂S , the specularity factor s would simply be cosine

of the angle between the two vectors θr. As shown in 3.12, as the angle between ~lS and

~rS increases, the specularity decreases. Hence, a surface normal pointing more towards a

light source would have higher specularity. Specularity factor s can be computed by taking

the dot product between the two vectors as follows,
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s = F (~rS · l̂S)

where l̂S is the light ray, ~rS is the reflected ray and function F() can be used to control

the cosine curve using one or more controls.

With the equation above, the darker regions will have a stronger base color while

brighter regions will be influenced more by the light source.

3.5 Integrated equation for Shading

In this section, all the calculations from previous sections will be integrated into one

single equation. The final color cS at a shading point p′S is the blending of base color with

the colors from specular highlights and scattering.

The amount of specular and scattering highlights can further be controlled using coef-

ficients ks and kf respectively. These coefficients decide how much of specular and scatter

highlights are visible. If they both are 0, only the diffuse illumination is visible. The above

equation can be modified as,

cS = (1− ks) (cB + ((1− kf ) + kf f) d cD cL) + ks s cS cL

where:

cB is the base color

cL is the light color

cD is the diffuse color

cS is the specular color

d is the diffuse factor
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s is the specularity factor

f is the forward scattering factor

ks is the specularity coefficient

kf is the forward scatter coefficient

If the illumination is high at a point, light color is more prominent. As illumination

decreases, the impact of light is reduced and hence the base color becomes more visible.

Specular and scatter coefficients ks and kf can be artistically controlled by the user to get

the required results. These coefficients decide the material properties. If ks is 1, it means

the object is fully specular and if kf is 1, the object is translucent. They can be adjusted to

get a wide range of interesting images.

This equation is similar to the Phong shading equation [19], as the reflected light

by a surface material is a combination of ambient light (base color), light reflected by

rough surfaces (diffuse scattering) and by shiny surfaces (specular highlights). Figure

3.13 shows an illustration of the results of our model using height fields,

(a) Ambient. (b) Diffuse. (c) Specular. (d) Combination.

Figure 3.13: Results of our model taking a Phong-like shading approach for specular
objects.

In addition to these shading layers, we include light scattered by translucent surfaces
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(forward scattering) as well. Forward scatter is visible when the light is in the back of the

object as shown in Figure 3.14. In this scenario, the light is placed directly in the back of

the sphere height field.

(a) Ambient. (b) Diffuse. (c) Forward Scatter. (d) Combination.

Figure 3.14: Results of our model to demonstrate forward scattering for translucent ob-
jects.
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4. IMPLEMENTATION AND RESULTS

4.1 Integrated Model Workflow

This section discusses about the overall workflow of the system. The result of this

model would be the rendered output that is qualitatively consistent with cos θ shading.

The model requires only a Height Map Image as required input. In case of environment

illumination, an Environment Map must be provided too. In addition, an Alpha Image can

also be given which can be helpful to remove any artifacts and render a clear image.

4.2 Framework Design

The implementation framework for this integrated model has been extended from

Xiong’s web framework [7]. Xiong’s thesis elaborates about the different User Goals

and Product requirements that was taken into consideration for designing this tool. She

also talks about Component Design and the importance of having a Responsive Interface

so that it can be accessed from various mobile or desktop devices. This model follows

the same look and style for creating controls and rendering images. Implemented using

WebGL and Javascript, the rendering is done real-time with interactive controls. Figure

4.1 shows the web interface of this tool.

4.3 Rendering

The rendering of a final image with this model involves different components: Height

Field, Light or Light Map, lighting controls and shading coefficients. In the following

sections, these components will be explained in detail.

Similar to Xiong’s framework, rendering is done using orthographic projection, which

means the direction of projection is normal to the projection plane [20]. The direction

of projection is parallel to z-axis and the projection is done on the (x, y) plane at z = 0.
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Figure 4.1: User interface of the integrated tool.

The camera is positioned on the +z side, pointing towards -z direction. Since the Center

of Projection is at∞, no perspective calculations are required here. Hence, a camera ray

from the camera to a shading position will always be (0, 0,−1).

4.3.1 Illumination Computation

This section explains how the illumination algorithm is implemented. For calculating

the illumination at a shading point pS , we need the height information at that point and all

points along the line segment L from pS to light position pL. As explained in Algorithm 1,

the illumination d is the inverse of the length of the line segment L in shadow. In the next

section, calculating the light position pL(xL,yL, zL) in canvas coordinates is discussed.

Let the shading point be pS(xS,yS, zS), where xS and yS are the current shading

positions (i.e. pixel position) along x and y axes respectively, and zS is the height at point

pS which is obtained from height map hmap.
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zS = hmap(xS,yS)

The shading position pS is then moved along its normal to be inside the actual height

boundary as shown in Figure 3.7). The new shading point is defined as,

p′S = pS − dn̂S

where d is the distance by which pS is moved along the normal n̂S and d > 0. Since

we use orthographic projection, the normal vector is parallel to the z-axis and simply

n̂S(0, 0, 1). In that case, the modified shading point is now p′S(xS,yS, zS − d).

Figure 4.2: Computing increment vector based on shading position p′S and light position
pL.

As per Figure 4.2, a right triangleABC is drawn with p′S(x′S,y
′
S, z

′
S) and pL(xL,yL, zL)

as two of its vertices adjacent to hypotenuse c. The lengths of the sides can be calculated

as,
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a =
√

(xL − x′S)2 + (yL − y′S)2

b = zL − z′S

c =
√

a2 + b2

An increment vector ~inc is needed to travel along the line segment L. and it depends

upon a given step size. Let the step size be Sstep. The increment vector ~inc(incx, incy, incz)

is then,

incx =
(xL − x′S)

Sstep

incy =
(yL − y′S)

Sstep

incz =
(zL − z′S)

Sstep

Next, the upper and lower limits along all dimensions need to be set so that we start

traveling from p′S along the line segment L and stop at pL. The following pseudo code is

used for calculating the lower limit plow(xlow,ylow, zlow) and upper limit phigh(xhigh,yhigh, zhigh),

if xL < x′S then xlow = xL; xhigh = x′S

else xlow = x′S; xhigh = xL

if yL < y′S then ylow = yL; yhigh = y′S

else ylow = y′S; yhigh = yL

if zL < z′S then zlow = zL; zhigh = z′S

else zlow = z′S; zhigh = zL

Finally, to calculate the illumination factor d for shading point p′S , we travel from

p′S in increments of ~inc to reach L. The lower and upper limits limlow and limhigh help
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in making sure we don’t go beyond line segment L. Here is the pseudo code used to

implement this concept,

pi(xi,yi, zi) = p′S

s = 1

while plow ≤ pi ≤ phigh do

if zi < Height(pi) then

s = s + 1

end

pi = pi + ~inc

end

d =
1

s

return d

4.3.2 Lights

The light mode can be chosen by the user based on their artistic goal. If the user needs

only a single light source, point illumination can be used and if there is a necessity for

an environment illumination, an environment map can be attached. Under Light Controls,

this option can be set, as shown in Figure 4.3.

Figure 4.3: Checkbox for Lighting mode in user interface.
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4.3.2.1 Single Light Source

In case of a single light source, the illumination algorithm as defined in Algorithm 1

only calculates the illumination factor once at a shading point. With that, the final color

cS at a point pS is calculated by mixing the light color and base color. A single point light

is represented as a dot on the screen. The light can be interactively controlled along the x

and y dimensions using the mouse. To move the light in the z direction, a Light Distance

control slider is provided in the interface.

The mouse coordinates differ from the canvas coordinates in terms of origin position

and scaling. For shading calculations, the mouse position corresponding to a light position

must be converted to it’s corresponding position on the canvas [7]. The position should be

normalized in order to support different aspect ratios. Let the origin of the canvas coordi-

nate at the top left corner be pC0(xC0, yC0) and the lower right corner be pC1(xC1, yC1).

In order to map the mouse coordinates to canvas coordinates, the following computation

is done:

xL =
xM − xC0

xC1 − xC0

+ 0.5

yL = −yM − yC0

yC1 − yC0

+ 0.5

where pM(xM ,yM) are the mouse coordinates and pL(xL, yL) are the canvas coordinates

that correspond to them. So, the canvas coordinate in 3D will now be pL(xL,yL, zL),

where zL is the distance of the point light source along the z-axis. This conversion is

explained in detail in Xiong’s thesis [7].

In a practical scenario where the scaling ratio between the canvas and mouse coordi-

nates is 1, the light position calculation will simply be,
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xL = xM + 0.5

yL = −yM + 0.5

Figure 4.4 shows examples of lighting using a single point light at different positions

and intensities.
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Figure 4.4: Examples of bas-reliefs created using a point light.
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4.3.2.2 Environment Light

When environment lighting setup is enabled, each point on the environment map con-

tributes to the shading at point pS instead of one single point light. The illumination

algorithm as defined in Algorithm 1 calculates the illumination contribution by each point

on the environment dome i.e. each point on the dome is assumed to be a light source. The

final color cS is then the mixing of illumination from all points on the environment dome.

The environment map can also be controlled by the user using mouse controls. Similar

to setting the point light position for a single light source as described in the previous sec-

tion, the rotation of an environment map can be controlled by moving the mouse positions

on the canvas. Let a 2D texture map t(u,v) that will be mapped onto the sphere have a

width and height of width and height respectively. The values for the coordinates range

between 0 ≤ ui,vj ≤ 1 and are calculated as,

ui =
i

width

vj =
j

height

Let the environment sphere have its center pL0(xL0,yL0, zL0) placed at the center of

the canvas and radius of r. The canvas coordinates pL(xL, yL) calculated above are added

as offsets to the spherical coordinates,

θ = ui + xL

φ = vj + yL

where t(ui,vj) are the uv-coordinates on a 2D environment texture map for point (i, j)

on the map. The i values are between 0 ≤ i ≤ width and j values are between 0 ≤ j ≤
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height.

During implementation, we align the y-axis of the sphere is with the z-axis of the can-

vas. Hence, the light coordinates on the sphere p′L(x′L,y
′
L, z

′
L) will now be calculated

as follows:

x′L = r sin θ sinφ

y′L = r cosφ

z′L = r cos θ sinφ

In Figure 4.5, we can see some of the images rendered using an environment sphere

with a rainbow-colored texture mapped onto it.
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Figure 4.5: Examples of bas-reliefs created by rotating a rainbow environment map.
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4.3.3 Soft Shadows

In the previous sections, we discussed about how the illumination algorithm is im-

plemented and how the light positions are calculated for a single light source and an en-

vironment dome. As per Figure 3.7, diffuse d calculated using Algorithm 1 holds the

illumination factor at each shading point pS . Since the algorithm calculates illumination

based on the length of line segment L, longer the length of L, the more pS is in shadow.

In other words, larger hindrance for the light source leads to darker regions. Figure 3.6

shows how this works. The areas closer to region B is darker because the height field

blocks most of the light that would reach the region. But region A is more exposed, so

it would have a higher d value. As we move to the left from region B towards region C,

the illumination factor gradually increases because it becomes more and more exposed to

light, hence producing a soft gradient of shadow. Hence, illumination and soft shadow

computation is integrated into the same algorithm producing results qualitatively consis-

tent with cos θ shading. Since this model only takes into account direct light sources and

not light reflected off of scene objects, indirect illumination is not possible here. Diffuse

can be rendered separately as shown in Figure 4.6 by simply using d as the color value,

cS(r, g, b, w) = (d,d,d, 1)

4.3.4 Base Color and Light Color

With base color cB, diffuse color cD light color cL, the illumination can be blended

together to create more visually appealing results. Figure 4.7 shows the effect of having a

base color for the object.

These colors can be chosen in the interface using color pickers as shown in Figure 4.8.

The light intensity IL is another factor that can be directly controlled by the user with a
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Figure 4.6: Examples of bas-reliefs of the diffuse and shadow using different light posi-
tions.

slider (Figure 4.9).

cS(r, g, b, w) = cB + d IL cD cL

Figure 4.10 some examples with different lighting and color setups.

4.3.5 Specular Highlights and Forward Scattering

The eye position pE for orthographic projection is at∞, so the viewing direction from

eye position to a shading point p′S would be parallel to z-axis and hence, the incident ray

~vS from p′S to pE is simply (0, 0, 1). The light direction l̂S from shading position p′S to

light position pL is,

l̂S =
pL − p′S
|pL − p′S|
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(a) Render with no base color. (b) Render with a green base color.

Figure 4.7: Images showing results with and without blending a base color.

Figure 4.8: Color pickers in user interface.

4.3.5.1 Computation of surface normal

Height fields don’t have any normal map information as they store only the relative

height at each point. In order to calculate the surface normal approximately at a shading

point, we find the difference between the heights before and after that point. The surface

normal ~nS(xN ,yN , zN) is calculated as,

xN = hmap(xS−1,yS).x− hmap(xS+1,yS).x
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Figure 4.9: Intensity slider in user interface.

Figure 4.10: Examples of bas-reliefs with different base and light colors.

yN = hmap(xS,yS−1).y − hmap(xS,yS+1).y

zN = 1

The surface normal is then normalized,

n̂S =
~nS

|~nS|
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4.3.5.2 Specularity

With the surface normal n̂S(xn,yn, zn) and incident ray ~vS , we can compute the re-

flected ray ~rS . The reflection equation can be simplified as follows,

~rS = −~vS + 2(n̂S · ~vS)n̂S

~rS = −(0, 0, 1) + 2((xn,yn, zn) · (0, 0, 1))(xn,yn, zn)

~rS = (0, 0,−1) + 2zn(xn,yn, zn)

The dot product of the reflected ray ~rS and light ray l̂S would be the specularity factor,

s = ~rS · l̂S

Some examples for renders with different specular coefficients are shown in Figure

4.11
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(a) ks = 0 (b) ks = 0.25

(c) ks = 0.5 (d) ks = 0.9

Figure 4.11: Examples of bas-reliefs with a front light and different specular coefficients
ks.

4.3.5.3 Forward Scattering

For forward scattering, we need the viewing direction in order to determine the amount

of scatter. For orthographic projection, the eye direction v̂′S from eye position pE to
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shading point p′S would be (0, 0,−1). The dot product of the viewing direction v̂′S and

light ray l̂S would be the scatter factor,

f = v̂′S · l̂S

Some examples for renders with different forward scattering coefficients are shown in

Figure 4.12
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(a) kf = 0.1 (b) kf = 0.4

(c) kf = 0.75 (d) kf = 1

Figure 4.12: Examples of bas-reliefs with a back light and different forward scatter coef-
ficients kf .

4.3.6 Falloff

The user can control the falloff of the light source using slider controls (Figure 4.13).

The controls can be used to provide a range that decides if the light source has a sharp or
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gradual falloff. Let smin and smax be the minimum and maximum values for specularity

fmin and fmax are minimum and maximum values for scattering. Then the falloff values

can be modified as,

Figure 4.13: Slider controls for setting Specular and Forward Scattering .

s =
s− smin

smax − smin

f =
f − fmin

fmax − fmin

Here are some examples of renders with different falloffs in Figure 4.14.
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Figure 4.14: Examples of bas-reliefs with different falloff values.

4.3.7 Final Shading Computation

Using the above computations, the forward scattering and specularity contributions can

be computed. The scatter and specularity coefficients can be controlled in the interface

using sliders as shown in Figure 4.13. These settings will give the users some artistic

control over basic material properties like the amount of reflectivity and translucency.
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For a translucent object like skin, the scatter effect would be high while specularity is

minimum. On the other hand, a burning candle would have some amount of reflective

quality while being translucent. A shiny object like metal is fully opaque and hence will

only have specularity. The equation will be modified as,

cS = (1− ks) (cB + ((1− kf ) + kf f) d IL cD cL) + ks s IL cS cL

where kf and ks are the coefficients of scatter and specularity respectively.

A simple trick is used for the final color calculation using the alpha channel value w.

w hold the weights of each color being blended together using the above equation. In case

of an environment light, each light sample will contribute to the color as well as intensity,

thereby increasing the overall brightness of the output. So, as a final step, we divide the

color with w to get desirable results.

cS(r, g, b, w)

w
= cS(r/w, g/w, b/w, 1)

Figure 4.15 shows some examples of objects with different types of material property

settings. Figure 4.16 shows some stylized renders of the Stanford Dragon using a rainbow

environment map with varying material properties.
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(a) s = 0.5, f = 0 (b) s = 0.15, f = 0.5

(c) s = 0, f = 0 (d) s = 0.8, f = 1

Figure 4.15: Examples of bas-reliefs using a front light and different specular and forward
scattering properties.
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Figure 4.16: Examples of stylized renders using a rainbow environment map.
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5. CONCLUSION AND FUTURE WORK

We presented an integrated model for computing direct illumination, scattering and

soft shadows qualitatively consistent with the cos θ techniques. Light scattering and trans-

mission are computed using an integrated function similar to the BSDF function. The

implementation of this model is really simple. The model computes direct illumination,

soft shadows, specular highlights and subsurface scattering in a real-time web environ-

ment. By interactively moving the lights and using various user controls, the required

artistic goal can be obtained.

This model can easily be included in a rendering system to replace models to obtain

these three effects. Height fields are nothing but depth information stored in a 2D image.

The integrated function introduced here can be extended to work in a 3D environment

too, where the height fields would be the replaced with actual depth information. It can

be integrated with modern ray tracing algorithms to obtain qualitatively consistent effects,

and hence it has a lot of future development scope. As an improvement to the current

system, the color values for materials can be replaced with actual texture maps to obtain

more meaningful results similar to real-life.
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