3 research outputs found

    Application of an Exhausted Fermentation Broth Obtained from Biohydrogen Production in an Apple Orchard: Assessment of Fruit Quality

    Get PDF
    About 95% of global hydrogen production is made by fossil fuels using different technologies which are all characterized by high energy consumption and high carbon emissions. Alternatively, more sustainable production methods, such as biological fermentation processes, are under study. Dark fermentation, also called acidogenesis, entails the transformation of a great variety of organic substances into a mixture of organic and inorganic products, as well as gases (H-2 and CO2). In this study we tested an exhausted fermentation broth, derived after Clostridium fermentation for H-2 production, as a biostimulant via foliar application in an intensive apple orchard. Two different doses were applied upon dilution of the broth in water (100 mL L-1 and 10 mL L-1), evaluating the main fruit quality parameters (fresh weight, fruit diameter, dry matter, firmness, soluble solid content, color lightness, DA index) in addition to macro- and micro-nutrients and heavy metals concentrations. Chemical characterization of the broth showed a high amount of low-MW polypeptides (Trp-Glu-Lys, Ile-Pro-Ile, Phe-Pro-Lys, His-Pro) and organic acids (formic acid, butyric acid, butanedioic acid); moreover, quantitative analyses of inorganic ions showed no heavy metal detection but high concentrations of nitrogen, phosphorus and potassium, compatible with use in agriculture. The fruit quality parameters showed significantly higher mean fruit weight compared to the untreated trees, as well as higher dry matter. No statistical differences were recorded among the treatments for fruit firmness, diameter and yield. Soluble solids content in both treatments were significantly lower than the controls, whereas the DA index mean values were higher in both treatments compared to the controls, indicating a delay in fruit ripening probably due to the high nitrogen broth concentration. Regarding the chemical analyses of fruits, no particular differences were found among the treatments, except for Fe, which showed a significantly higher amount upon treatment with the lower dose. As concerns leaves, no phytotoxic symptoms were detected in both treatments, making the described exhausted broth a candidate for its use as a plant biostimulant. Additional studies are needed to evaluate the ideal application dose, identify further action targets and implement appropriate strategies to concentrate the biostimulant active compounds

    The effects of chestnut orchard microclimate on burr development

    Get PDF
    Chestnut crop is regaining its fame worldwide with powerful investment perspectives. Unluckily the climate change effects are posing high threat to its cultivation with less available resources and increased production cost both in traditional and specialized orchards. Additionally, the chestnut physiological knowledge is still limited, especially as concern the burr development (i.e., the economical production target) and its relationship with the environmental parameters. The aim of the present study was to evaluate the seasonal, daily, and hourly burr growth pattern associated to environmental parameters for improving physiological knowledge on this species. The study was carried out in a traditional rainfed sweet chestnut orchard located in the Tuscan-Emilian Apennines (Monterenzio, Italy). The chestnut burr growth was measured, along the entire season, both with a digital calliper and through the use of plant-based sensors (fruit-gauges) that permitted to measure, in real-time, the burr growth pattern. Environmental data were recorded by a weather station placed in the middle of the orchard. Results evidenced a higher burr growth rate, in the last part of the season (from middle-end of August to full fall) while the daily growing pattern was characterized by increased oscillation, along the season, of night-swelling and daily-shrinkage. The night-swelling was found to be influenced by high nocturnal air relative humidity while the daily-shrinkage was influenced by the higher wind speed, solar radiation and vapour pressure deficit. Thus, the burr daily net growth can be associated, depending on the phenological stages, to environmental parameters. Precipitation but especially the atmosphere humidity, in September and October, were the main external drivers of burr daily net growth. These results could be promising for the adoption of sustainable (e.g., late season grass mowing, sprinkler irrigation) and smart practices for improving chestnut management in both traditional and specialized orchards

    The fate of bacteria in urban wastewater-irrigated peach tree: a seasonal evaluation from soil to canopy

    Get PDF
    Irrigation with wastewater can be a solution to preserve and mitigate freshwater demand, in particular during drought periods. Unfortunately, wastewater, although being treated at different levels, could be a carrier of human pathogens (e.g., E. coli) and potentially contaminate crops for human consumptions.This study investigated the seasonal microbiological concentrations, on soil, shoot and fruit tissues of potted peach trees, following two irrigation treatments: freshwater (FW) and secondary urban wastewater without the final disinfection treatment (SW). E. coli was only detected in SW irrigated soil, whereas total coliforms (TC) and total bacteria counts (TBC) were similar in both treatments throughout the season. EndophyticE. coli, Salmonella spp. and TC were not detected in shoot and fruit, but a higher presence of total bacteria (TBC) was observed in SW-irrigated tree compared to FWirrigated tree. In particular, SW shoots had a higher load compared to fruits, thus showing a potential effect of leaf transpiration, that promoted the transfer of water-borne bacteria from soil to the epigeal part (shoot). The adoption of low-quality SW (even above the microbiological limits of the European Regulation 2020/741 for wastewater re-use in agriculture), when a drip irrigation method is applied, could be a valid alternative to save fresh water without compromising fruit safety
    corecore