18 research outputs found
UpravljaÄki aspekti implementacije meÄunarodnog standarda upravljanja okolinom ISO 14001:2004
This paper analyzes the managerial aspect in the implementation of international environmental management standard ISO 14001:2004. It is known that the implementation of this standard has all the elements of the project approach, which is the responsibility of the management of organizations (companies, institutions, etc.) is crucial. This aspect is analyzed for its impact on all other elements in the management of the environment, directly on the determination of the needs for the introduction of environmental management systems, formulation of environmental policy, planning activities, implementation plan, measure results, evaluation of results achieved, and continuous improvement. The concept of EMS (Environment Management System) is based on the introduction of a systematic and logical conditional process of environmental management in the way that affects the organization, control and prevent adverse environmental impacts that are reflected through the work of the same, and the role of the organization management and managerial approach is reflecting to the essence and form of implementation of international standards
Influence of process conditions on reduction of silicon and calcium impurities in aluminum solution
As it is known, during regular conditions Bayer\u27s process is used for production of alumina of a 99.0 % grade of purity. In order to obtain high-purity alumina which can then be used for special purposes, additional purification is performed in relation to the application of impurities, and, in the first hand removal of silica (Si) and calcium (Ca). One of the most effective ways of removing these compounds is the process of desilication. The method consists of treating an aluminate solution with lime that binds silica and calcium to tricalcium-aluminate (TCA) which is insoluble and therefore easily separated of the solution.
The experimental research examined the impact of process parameters (temperature, time, concentration of added lime) on the efficacy of purifying aluminate solution from Si and Ca, which has a practical and theoretical contribution to aluminate solution research. Synthetic aluminate from non-metallurgic alumina and pure sodium-alkaline (NaOH) is used, in the caustic ratio in the range of 1.45-1.55. Classic volume analysis and analysis using optical emigration spectroscopy (ICP-OES) were used to determine the contents of aluminum and impurities. The experimental research found that short intervals are adverse because soluted compounds Ca(OH)2 and tetra-calcium aluminum are formed. Also, during longer reaction time and higher temperatures there was an increase in the contents of Si and Ca in the aluminum, because some components from the limestone were dissolved. Small amounts of lime are adverse because there is an increase in calcium content in the solution since part of the lime dissolved, without interacting with the present impurities, while large quantities led to large aluminum loss due to the formation of TCA.</p
O jednoj pogodnoj metodi za optimizaciju zavarenog sklopa
The paper shows an example of performed optimization of sizes in terms of welding costs in a characteristic loaded welded joint. Hence, in the first stage, the variables and constant parameters are defined, and mathematical shape of the optimization function is determined. The following stage of the procedure defines and places the most important constraint functions that limit the design of structures, that the technologist and the designer should take into account. Subsequently, a mathematical optimization model of the problem is derived, that is efficiently solved by a proposed method of geometric programming. Further, a mathematically based thorough optimization algorithm is developed of the proposed method, with a main set of equations defining the problem that are valid under certain conditions. Thus, the primary task of optimization is reduced to the dual task through a corresponding function, which is easier to solve than the primary task of the optimized objective function. The main reason for this is a derived set of linear equations. Apparently, a correlation is used between the optimal primary vector that minimizes the objective function and the dual vector that maximizes the dual function. The method is illustrated on a computational practical example with a different number of constraint functions. It is shown that for the case of a lower level of complexity, a solution is reached through an appropriate maximization of the dual function by mathematical analysis and differential calculus.U radu je, na primeru jednog karakteristiÄnog optereÄenog zavarenog sklopa, izvrÅ”ena optimizacije njegovih dimenzija sa aspekta troÅ”kova zavarivanja. Pri ovome, u prvoj fazi definisane su promenljive i nepromenljive veliÄine i postavljen matematiÄki oblik funkcije optimizacije. U sledeÄoj etapi procedure, definisan je i postavljen sistem najvažnijih funkcija ograniÄenja koji se pri projektovanju konstrukcije moraju uzeti u obzir i tehnolog i konstruktor. Na taj naÄin, dobijen je matematiÄki model optimizacije posmatranog problema za Äije je efikasno reÅ”avanje predložen metod geometrijskog programiranja. U nastavku, polazeÄi od matematiÄke osnove, detaljno je razraÄen algoritam optimizacije predložene metode pri Äemu su postavljene glavne jednaÄine problema, a koje važe uz odreÄene uslove. Na taj naÄin, optimizacioni ili primarni zadatak sveo se na dualni zadatak preko odgovarajuÄe funkcije, koji se znatno lakÅ”e reÅ”ava u odnosu na primarni zadatak optimizacije funkcije cilja. Glavni razlog za ovo je dobijeni sistem linearnih jednaÄina. Pri ovome iskoriÅ”tena je korelacija izmeÄu optimalnog primarnog vektora koji minimizira funkciju cilja i dualnog vektora koji maksimizira dualnu funkciju. Metoda je ilustrovana na jednom raÄunskom praktiÄnom primeru sa razliÄitim brojem funkcija ograniÄenja. Pokazano je da se za sluÄaj manjeg stepena složenosti, do reÅ”enja može doÄi maksimizacijom odgovarajuÄe dualne funkcije, primenom matematiÄke analize odnosno diferencijalnog raÄuna
AnalitiÄka greÅ”ka kod izbora referentnog stanja u termodinamici idealnog gasa
The paper is based on the fact that the internal energy, enthalpy and enthropy as most important thermodynamic state functions, can not be determined in absolut terms without reference state slections. It is demonstrated that to determination must be approached very cautiously. The reason for this is possibility of errors that are not permissible. The beginning conditions of measurement can be adopted. It is also necessary to pay attention to the beginning the measurement of the adopted reference value. For a case to be simultaneous determination of multiple state functions, it should take to account the beginning of the measurement of each of these functions, since this start may different. In this way the calculated state function vares, depending on refenece state is adopted. At the end, in one convenient example, in the case internal energy and enthalpy, as a characteristic state function, is pointed to possiility errors, which could occur if there is no detailed analysis of adopted reference of āzeroā state.U radu je, polazeÄi od Äinjenice da se unutraÅ”nja energija, entalpija i entropija kao najvažnije termodinamiÄke veliÄine stanja, ne mogu odrediti u apsolutnom iznosu bez izbora referentnog stanja, pokazano da je pri ovom odreÄivanju potrebno pristupiti veoma obazrivo. Razlog za ovo je moguÄnost greÅ”aka koje nisu dopustive. Pri ovome usvojeni poÄetak merenja može u opÅ”tem sluÄaju biti razliÄit. Neophodno je takoÄe obratiti pažnju na definisanost odreÄene veliÄine stanja za usvojenu referentnu vrednost. Za sluÄaj da se vrÅ”i istovremeno odreÄivanje viÅ”e veliÄina stanja, treba voditi raÄuna o poÄetku merenja svake od ovih veliÄina, s obzirom da ovaj poÄetak može biti razliÄit. Na ovaj naÄin izraÄunata veliÄina stanja zavisi od toga koje referentno stanje je usvojeno. Na kraju rada, koristeÄi praktiÄan raÄunski primeru, za sluÄaj unutraÅ”nje energije i entalpije, kao karakteristiÄnih veliÄina stanja, ukazano je na moguÄnost greÅ”ke, koja se može javiti ukoliko se ne izvrÅ”i detaljna analiza izbora referentnog, odnosno ānultogā stanja.XI Conference of Chemists, Technologists and Environmentalists of Republic of Srpska, TesliÄ / Xi savjetovanje hemiÄara, tehnologa I ekologa Republike Srpske, 14.07.2016
Graphical determination of polytropic index in characteristic diagrams
U ovom radu, koristeÄi postojeÄa znanja iz termodinamike, prikazana su tri naÄina grafiÄkog odreÄivanja eksponenta politrope, kao i klasiÄni analitiÄki naÄin.U radu smo koristili karakteristiÄne dijagrame p-v i T-s i u njima konstruisali odreÄene politropske promene koje smo u daljim razmatranjima koristili za odreÄivanja eksponenta politrope. Prvi naÄin se zasniva na konstruisanju dijagrama log p=f(log v) i iz nagiba prave oÄitavamo vrednost traženog eksponenta. DruginaÄin je neÅ”to složeniji i zasniva se na konstruisanju politrope u p-v dijagramu, na koju, u proizvoljnoj taÄki politrope, povlaÄimo tangentu i diferencijalnom metodom dolazimo do eksponenta politrope. A treÄi naÄin zasniva se na konstruisanju politrope u T-s dijagramu, koriÅ”Äenju osnovnih teorema diferencijalnog raÄuna, odnosno I i II zakona termodinamike za uoÄene izotermske promene i pisanju osnovne jednaÄine politropske zavisnosti u diferencijalnom obliku. Prikazana grafiÄka reÅ”enja omoguÄuju efikasnijije teorijsko izuÄavanje politropskih promena stanja i znatno pomažu jasnijiem sagledavanju problema koji su u vezi sa ovom vrstom promene stanja
Jedna moguÄnost grafiÄkog predstavljanja energetskih veliÄina realnog gasa za karakteristiÄnu promenu stanja
In this paper, for the case of isothermal quasi static characteristic change of the state of real gas is given graphical representation respectively determination of the most important energy values in h-s and T-s diagrams. At present, by using the fundamental theorem of differential calculus, the first and second law of thermodynamics is written in differential form, dependence is derived that allowed precise graphic design to determine the most important values of the process (technical work and amount of exchanged heat) to h-s diagram, over certain straight lines which represent the height differences. Performed graphic design, is applied to two typical cases in the same diagram. Also, a comparison is performed with same change of state in the case of an ideal gas. In the second part of this paper, starting from the fact that for the behavior of real gas, co-ordinate systems h, s and T, s are suitable but p, v systems, the proposal is given to the graphic representation of the changes of enthalpy and internal energy in heat T-s diagram. In this case, it is used the lines of constant enthalpy and internal energy i. e. that is their point of intersection with isobars, which passing through the endpoint of analyzed the change of state. It is shown that the change of enthalpy and internal energy in T-s diagram can be presented planimetry over the appropriate areas. Based on the certain change of enthalpy and internal energy, by using the both form of the first law in thermodynamic, it is shown that in addition to the amount of ex- changed heat, but it is possible for volume and technical work, for the proposed change of state of real gas, also can be represented graphically in T-s diagram, over suitable equivalent areas, which was the basic idea of this paper. Displayed graphics solutions in relation to the analytical solutions allows more efficient theoretical study of thermodynamic process which is observed from different points, they significantly assist for clear understanding of the problem and improve of mutual understanding.U radu je za karakteristiÄnu kvazistatiÄku izotermsku promenu stanja realnog gasa, dato grafiÄko predstavljanje odnosno odreÄivanje najvažnijih energetskih veliÄina u h-s i T-s dijagramima. KoristeÄi osnovnu teoremu diferencijalnog raÄuna, odnosno I i II zakon termodinamike napisan u diferencijalnom obliku, izvedena je opÅ”ta zavisnost koja je omoguÄila preciznu grafiÄku konstrukciju za odreÄivanje najvažnijih veliÄina procesa (tehniÄki rad i razmjenjena koliÄina toplote) u h-s dijagramu, preko odgovarajuÄih duži koje predstavljaju visinske razlike. Izvedena grafiÄka konstrukcija, primjenjena je na dva karakteristiÄna sluÄaja u istom dijagramu. Prethodno je izvrÅ”eno i poreÄenje sa istom promenom stanja za sluÄaj idealnog gasa. U drugom delu rada, polazeÄi od Äinjenice da su za prikazivanje promena stanja realnog gasa mnogo pogodniji koordinatni sistemi h, s i T, s nego p, v sistem, dat je predlog za grafiÄko predstavljanje promene entalpije i unutraÅ”nje energije u toplotnom T-s dijagramu. IskoriÅ”tene su linije konstantne entalpije i unutraÅ”nje energije, odnosno njihove preseÄne taÄke sa izobarom i izohorom, koje prolaze kroz krajnju taÄku analizirane promjene stanja. Pokazano je da se promena entalpije i unutraÅ”nje energije u T-s dijagramu može predstaviti planimetrijski preko odgovarajuÄih povrÅ”ina. Na bazi odreÄene promene entalpije i unutraÅ”nje energije, koristeÄi oba karakteristiÄna oblika i zakona termodinamike, pokazano je da je pored razmenjene koliÄine toplote, moguÄe i zapreminski i tehniÄki rad, za usvojenu promenu stanja realnog gasa, takoÄe grafiÄki predstaviti u T-s dijagramu preko odgovarajuÄih ekvivalentnih povrÅ”ina, Å”to je bila i osnovna ideja rada. Prikazana grafiÄka reÅ”enja u odnosu na analitiÄka, omoguÄuju efikasnije teorijsko izuÄavanje i predstavljanje posmatranog termodinamiÄkog procesa sa razliÄitih aspekata, i znatno pomažu jasnijem sagledavanju problema i poboljÅ”anju meÄusobnog sporazumevanja
New model for determining of change entropy of semi-ideal gas by using fractional temperature function
Kod poluidealnog gasa, promena entropije ne može se odrediti preko srednjeg specifiÄnog toplotnog kapaciteta na naÄin kao Å”to se odreÄuje promena unutraÅ”nje energije i entalpije, odnosno razmenjena koliÄina toplote. UzimajuÄi ovo u obzir, u radu je izveden pogodan model preko koga je moguÄe odrediti promenu specifiÄne entropije poluidealnog gasa za proizvoljan temperaturski interval primenom tabliÄne metode, koristeÄi srednje vrednosti razlomljenih temperaturnih funkcija. Ideja je da se integriranje koje se ovde neminovno javlja, zameni srednjim vrednostima prethodnih funkcija. Model je izveden na bazi funkcionalne zavisnosti stvarnog specifiÄnog toplotnog kapaciteta od temperature. Pri ovome koriÅ”Äena je teorema o srednjoj vrednosti funkcije kao i matematiÄke osobine odreÄenog integrala.
Srednja vrednost razlomljene funkcije odreÄena je direktno preko njene podintegralne funkcije. Izvedene relacije, primenom raÄunarskog programa, omoguÄile su sastavljanje odgovarajuÄih termodinamiÄkih tablica preko kojih je moguÄe odrediti promenu entropije proizvoljne promene stanja na efikasan odnosno racionalan naÄin bez primene integralnog raÄuna, odnosno gotovih obrazaca. Na ovaj naÄin, promena entropije poluidealnog gasa, odreÄena je za proizvoljan temperaturski interval analognom metodom koja se primenjuje i kod odreÄivanja promene unutraÅ”nje energije i entalpije odnosno razmenjene koliÄine toplote, Å”to je bio i cilj rada. Verifikacija predložene metode za gore navedenu funkciju, izvedena je za odreÄeni poluidealni gas za tri usvojena temperaturska intervala, za karakteristiÄnu promenu stanja. Pri ovome izvrÅ”eno je poreÄenje rezultata prema klasiÄnoj integralnoj i predloženoj metodi preko sastavljenih tablica.Prikazanu metodu, u odreÄenim odnosno posebnim sluÄajevima, moguÄe je primeniti i kod odreÄivanja promene entropije realnog gasa.Isto tako, u radu je pokazano da je promenu entropije za posmatrani karakteristiÄan sluÄaj, moguÄe predstaviti odnosno grafiÄki odrediti planimetrijskom metodom u dijagramima sa pogodno odabranim koordinatama
Solving some problems in field of heat capacity by using of new correlation
In the thermodynamics practice, both for semi ā ideal and for real gases, the
dependence of the middle specific heat capacity of temperature, is usually determined by experimentally as linear function, mainly, for the relatively short temperature range. In addition to this, for the purpose of various analyzes, both in theory
and in practice, is necessary to know the dependence of the real specific heat capacity of temperature also. Due to this, in this paper was the definition of the middle specific heat capacity for certain, selected a suitable temperature range, by using differential and integral calculus, analytical dependence is derived from the real
specific heat capacity and the middle specific heat capacity. The relation which is
given in the differential form for defined temperature range, allows direct troubleshooting without special restriction on its use. By using the resulting dependence,
the general model is derived in the form of polynomial of arbitrary degree by depending of temperature, which is faster and more convenient for practical application of the current model, which has not a general character. Also the existing
model is not the most appropriate because it solves the problem given indirectly,
considering it requires analytical dependence of the amount of exchanged heat.
Correlation which has derived in this paper, can be effectively applied to obtain of
depending on the amount of exchanged heat between the temperature and also for
the observed temperature range. Derived analytical relation was used to obtain
another relation to the amount of exchanged heat which have a more complex form
of the existing two, which can be applied for various thermodynamic analysis. Verification of the present model and the possibility of its application is given to a
few characteristic examples of semi ā ideal and real gas and CO2 gas as semi ā
ideal based on the experimental results, the diatomic semi ā ideal gases starting
from Einstein relation, water as real fluid starting from the Dieteritium relation,
and at the and characteristic group of real gases. Therefore, it is seen wider temperature range
GrafiÄko predstavljanje energetskih veliÄina idealnog gasa u karakteristiÄnim dijagramima na naÄin koji nije uobiÄajen
In this paper, for characteristic polytropic change of state of ideal gas is given graphical planimetric graphical representation of the most important energy values in workplace and thermal diagram, trough the appropriate area. In this paper, we used differential forms of the First and Second law of thermodynamics and basic equation which define the observed change of state, written in a suitable form. The results for the polytropic change of state, are applied to the isobaric and isochoric change of state. It is shown that any of the energy values ( q12, w12, wt12, Dh12, Du12) can be present in both workplace (p, v) as well as thermal (T-s) diagram. Graphical solutions, compared to the analytical, provide efficient theoretical explain and presentation of various thermodynamic processes of ideal gas with different aspects and greatly assist a clearer view of the problem and enhance each other living arrangement. Graphical representation of external influences or energy values shown in the diagrams, make it possible to more clearly we see connection between these effects, change of state, as well as their each other relations. This is particularly evident in the case when there are (p, v) and (T-s) diagram for a par tic u lar ideal gas, which is common in technical practices (e. g., air as an ideal gas).U radu je za karakteristiÄnu politropsku promenu stanja idealnog gasa dato grafiÄko planimetrijsko predstavljanje najvažnijih energetskih veliÄina u radnom i toplotnom dijagramu, preko odgovarajuÄih povrÅ”ina. Pri ovome koriÅ”Äeni su diferencijalni oblici prvog i drugog zakona termodinamike, kao i osnovne relacije koje definiÅ”u posmatranu promenu stanja, napisane u pogodnom obliku. Dobijeni rezultati, za politropsku kao opÅ”tu promenu stanja, primenjeni su na izobarsku i izohorsku, kao karakteristiÄne promene stanja. Pokazano je da bilo koju od energetskih veliÄina (q12, w12, wt12, Īh12, Īu12) moguÄe predstaviti kako u radnom (p-v), tako i u toplotnom (T-s) dijagramu. Prikazana grafiÄka reÅ”enja, u odnosu na analitiÄka, omoguÄuju efikasnije teorijsko razmatranje i predstavljanje razliÄitih termodinamiÄkih procesa idealnog gasa sa razliÄitih aspekata i znatno pomažu jasnijem sagledavanju problema i poboljÅ”avaju meÄusobno sporazumevanje. GrafiÄki prikazi spoljnih uticaja, odnosno energetskih veliÄina u prikazanim dijagramima, omoguÄuju da se joÅ” jasnije uoÄi veza izmeÄu tih uticaja, promena stanja, kao i njihovi meÄusobni odnosi. Ovo posebno dolazi do izražaja za sluÄaj kada postoji (p, v) i (T-s) dijagram za odreÄeni idealni gas, Å”to je Äest sluÄaj u tehniÄkoj praksi (na primer za vazduh kao idealan gas)
Predlog za odreÄivanje minimalne zapremine rezervoara za karakteristiÄne komprimovane gasove na bazi koncepta maksimalnog rada
Starting from the main relation for closed thermodynamic systems for maximum work of reverse processes, a general model for determining the minimum volume of the tank containing compressed ideal gases, nitrogen and oxygen, as the main constituent components of the air has been developed. In addition to thermal and mechanical, in the observed complex system there is a concentration imbalance. In this way, the analyzed isolated system fulfills the conditions for obtaining work. In determining the model, it is assumed that the initial parameters of the gas in the tank, the state of the environment and the necessary energy (maximum work) to be obtained from the given gas are known. Thermal and mechanical imbalance is realized through an isentropic and isothermal state change, while the problem of concentration imbalance, considering the observed gases, is solved on the basis of the relation for the volume fraction of the component in the gas mixture, i.e. the partial pressure of the observed gas in the environment. In addition to the analytical, in order to control the obtained results, a graphical solution of the observed problem was given using the p-v i.e. T-s diagram. At the end of the work, the application of the model is illustrated on a practical example from practice, where the minimum volumes of the tank for nitrogen and oxygen as characteristic gases, were defined. In order to compare the results, the volume of the tank in which the air is located is determined under the same initial conditions, i.e. the same parameters of the environment. The obtained results can be used in practice for dimensioning or estimating the actual volume of the reservoirs for technical gases, since the actual processes are generally irreversible from the thermodynamic aspect.PolazeÄi od glavne relacije za zatvorene termodinamiÄke sisteme za maksimalan rad povratnih procesa, u radu je izveden opÅ”ti model za odreÄivanje minimalne zapremine rezervoara u kome se nalaze komprimovani idealni gasovi azot i kiseonik koji su glavne sastavne komponente vazduha. Pored termiÄke i mehaniÄke neravnoteže, u posmatranom kompleksnom sistemu postoji i koncentraciona neravnoteža. Na taj naÄin u analiziranom izolovanom sistemu su ispunjeni uslovi za dobijanje rada. Pri odreÄivanju modela, poÅ”lo se od pretpostavke da su poznati poÄetni parametri gasa u rezervoaru, stanje okoline kao i neophodna energija (maksimalni rad) koji treba dobiti od datog gasa. TermiÄka i mehaniÄka neravnoteža ostvarena je preko izentropske i izotermske promene stanja dok je problem koncentracione neravnoteže, s obzirom na posmatrane gasove, reÅ”en na bazi relacije za zapreminski udeo komponente u meÅ”avini gasova odnosno parcijalni pritisak posmatranog gasa u okolini. Pored analitiÄkog reÅ”enja, radi kontrole dobijenih rezultata dato je i grafiÄko reÅ”enje posmatranog problema koriÅ”Äenjem p-v odnosno T-s
dijagrama. Na kraju rada primena modela ilustrovana je na jednom primeru iz prakse gde su odreÄene minimalne zapremine rezervoara za azot i kiseonik, kao posmatrane karakteristiÄne gasove. Radi poreÄenja rezultata odreÄena je i zapremina rezervoara u kome se nalazi vazduh pod istim poÄetnim uslovima odnosno istim parametrima okoline. Dobijeni rezultati u praksi mogu poslužiti za dimenzionisanje odnosno procenu stvarne zapremine rezervoara za tehniÄke gasove s obzirom da su stvarni procesi sa termodinamiÄkog aspekta uglavnom nepovratni