53 research outputs found

    An Ultrasound Matrix Transducer for High-Frame-Rate 3-D Intra-cardiac Echocardiography

    Get PDF
    Objective: Described here is the development of an ultrasound matrix transducer prototype for high-frame-rate 3-D intra-cardiac echocardiography. Methods: The matrix array consists of 16 × 18 lead zirconate titanate elements with a pitch of 160 µm × 160 µm built on top of an application-specific integrated circuit that generates transmission signals and digitizes the received signals. To reduce the number of cables in the catheter to a feasible number, we implement subarray beamforming and digitization in receive and use a combination of time-division multiplexing and pulse amplitude modulation data transmission, achieving an 18-fold reduction. The proposed imaging scheme employs seven fan-shaped diverging transmit beams operating at a pulse repetition frequency of 7.7 kHz to obtain a high frame rate. The performance of the prototype is characterized, and its functionality is fully verified. Results: The transducer exhibits a transmit efficiency of 28 Pa/V at 5 cm per element and a bandwidth of 60% in transmission. In receive, a dynamic range of 80 dB is measured with a minimum detectable pressure of 10 Pa per element. The element yield of the prototype is 98%, indicating the efficacy of the manufacturing process. The transducer is capable of imaging at a frame rate of up to 1000 volumes/s and is intended to cover a volume of 70° × 70° × 10 cm. Conclusion: These advanced imaging capabilities have the potential to support complex interventional procedures and enable full-volumetric flow, tissue, and electromechanical wave tracking in the heart.</p

    Developmental patterns in human blood–brain barrier and blood–cerebrospinal fluid barrier ABC drug transporter expression

    Get PDF
    When drugs exert their effects in the brain, linear extrapolation of doses from adults could be harmful for children as the blood–brain barrier (BBB) and blood–CSF barrier (BCSFB) function is still immature. More specifically, age-related variation in membrane transporters may impact brain disposition. As human data on brain transporter expression is scarce, age dependent [gestational age (GA), postnatal age (PNA), and postmenstrual age (PMA)] variation in immunohistochemical localization and staining intensity of the ABC transporters P-glycoprotein (Pgp), breast cancer resistance protein (BCRP), and multidrug resistance-associated proteins 1, 2, 4, and 5 (MRP1/2/4/5) was investigated. Post mortem brain cortical and ventricular tissue was derived from 23 fetuses (GA range 12.9–39 weeks), 17 neonates (GA range 24.6–41.3 weeks, PNA range 0.004–3.5 weeks), 8 children (PNA range 0.1–3 years), and 4 adults who died from a wide variety of underlying conditions. In brain cortical BBB, immunostaining increased with age for Pgp and BCRP, while in contrast, MRP1 and MRP2 staining intensity appeared higher in fetuses, neonates, and children, as compared to adults. BCSFB was positively stained for Pgp, MRP1, and MRP2 and appeared stable across age, while BCRP was not detected. MRP4 and MRP5 were not det

    Publisher Correction: Tubular iron deposition and iron handling proteins in human healthy kidney and chronic kidney disease)

    Get PDF
    Correction to: Scientific Reports https://doi.org/10.1038/s41598-018-27107-8, published online 19 June 201

    A 30 ppm &lt; 80 nJ Ring-Down-Based Readout Circuit for Resonant Sensors

    No full text
    This paper presents an energy-efficient readout circuit for micro-machined resonant sensors. It operates by briefly exciting the sensor at a frequency close to its resonance frequency, after which resonance frequency and quality factor are determined from a single ring-down transient. The circuit employs an inverter-based trans-impedance amplifier to sense the ring-down current, with a programmable feedback network to enable the readout of different resonant sensors. An inverter-based comparator with dynamically-adjusted threshold levels tracks the ring-down envelope to measure quality factor, and detects zero crossings to measure resonance frequency. The excitation frequency is dynamically adjusted to accommodate large resonance frequency shifts. Experimental results obtained with a prototype fabricated in 0.35 ÎĽm standard CMOS technology and three different SiN resonators are in good agreement with conventional impedance analysis. The prototype achieves a frequency resolution better than 30 ppm while consuming less than 80 nJ/meas from a 1.8 V supply, which is 7.8x less than the state-of-the-art

    Exposure related mutagens in urine of rubber workers associated with inhalable particulate and dermal exposure

    No full text
    Aims: To determine the relation of the inhalation and dermal exposure routes and mutagenic activity in the urine of rubber workers (n = 105). Methods: Mutagenic activity of ambient total suspended particulate matter (TSPM), surface contamination wipes, and Sunday and weekday urine samples was assessed with S typhimurium YG1041 in the presence of a metabolic activation system. Each subject was grouped into one of two exposure categories for dermal exposure (high (≥25 revertants/cm(2)), low (<25 revertants/cm(2))) based on the mutagenic activity detected on likely skin contact surfaces and into two airborne mutagenic exposure categories (high (≥210 revertants/m(3)), low (<210 revertants/m(3))). The potential influence of skin aberrations and acetylation status (NAT2) on urinary mutagenicity levels was also evaluated. Results: A non-significant increase of +1605 revertants/g creatinine in urinary mutagenicity during the workweek relative to levels observed on Sunday was observed for the total population. Subsequent multivariate regression analyses, with the subjects' weekday urinary mutagenicity levels as the dependent variable, revealed associations with environmental and mainstream tobacco smoke exposure, with the level of mutagenic contamination on surfaces with which the subjects had likely contact, with the subjects' inhalable particulate exposure level, with observed mild skin aberrations, and when the subjects had a slow acetylation phenotype. Similar associations, although weaker were observed with Sunday urinary mutagenicity levels as well, except for the association with slow acetylation phenotype. Based on measured exposure levels it could be estimated that a high potential for exposure to surface contamination with mutagenic activity increased weekday urinary mutagenicity by about 62% when compared to low exposed workers, while high inhalable particulate exposure levels increased weekday urinary mutagenicity levels by about 21%. Subjects with mild skin aberrations had an additional, non-significant, increase in weekday urinary mutagenic activity compared to subjects without any skin aberrations. Discussion: Results suggest that the dermal exposure route may contribute more to the level of genotoxic compounds in urine of rubber workers than the inhalation route. Although the study was limited in size, the results warrant further investigation in the importance of and ways to effectively control the dermal exposure route in the rubber industry

    Impaired effect of relaxin on vasoconstrictor reactivity in spontaneous hypertensive rats

    No full text
    Contains fulltext : 125950.pdf (publisher's version ) (Closed access)Relaxin is thought to be involved in vasodilation to pregnancy by increasing endothelium-dependent vasodilation and compliance, and decreasing myogenic reactivity. Primary (essential) hypertension predisposes to circulatory maladaptation and subsequent gestational hypertensive disease. This study aimed to determine that vascular responses to chronic exposure to relaxin are impaired in young female rats with primary hypertension. In 10-12 weeks old Wistar-Hannover rats (WHR) and spontaneous hypertensive rats (SHR), we determined vascular responses in isolated kidney and mesenteric arteries after 5-days of chronic exposure to relaxin (4 mug/h) or placebo. SHR show decreased sensitivity to phenylephrine (by 67%, p<0.01) and renal perfusion flow (RPFF, by 19%, p<0.01), but no changes in flow-mediated vasodilation, myogenic reactivity or vascular compliance. In WHR, relaxin stimulated flow-mediated vasodilation (2.67 fold, from 48 +/- 9 to 18 +/- 4 mul/min, p = 0.001), inhibited myogenic reactivity (from -1 +/- 2 to 7 +/- 3 mum/10 mmHg, p = 0.01), and decreased sensitivity to phenylephrine (28%, from 1.39 +/- 0.08 to 1.78 +/- 0.10 muM, p<0.01), but left compliance and RPFF unchanged. NO-blockade by L-NAME diminished most relaxin-mediated responses. In SHR, the vasodilator effects of relaxin were blunted for myogenic reactivity and sensitivity to phenylephrine, with similar effects on flow-mediated vasodilation, compliance, RPFF and equal Rxfp1 (relaxin family peptide receptor) gene expression, as compared to WHR. Primary hypertension blunts both the relaxin-induced inhibition of myogenic reactivity and alpha-adrenergic vasoconstrictor response, independent from Rxfp1 gene expression, while the relaxin-dependent enhanced flow-mediated vasodilation remains intact. This implies selective resistance to relaxin in young subjects suffering from primary hypertension

    A Readout IC for Capacitive Touch Screen Panels With 33.9 dB Charge-Overflow Reduction Using Amplitude-Modulated Multi-Frequency Excitation

    No full text
    This article presents a readout integrated circuit (ROIC) for capacitive touch-screen panels (TSPs) employing an amplitude-modulated multiple-frequency excitation (AM-MFE) technique. To prevent charge overflow, which occurs periodically at the beat frequency of the excitation frequencies, the ROIC modulates the amplitude of the excitation voltages at a mixing frequency derived from the excitation frequencies. Thus, the ROIC can sense the charge signal without charge overflow and maximize the signal-to-noise ratio (SNR) by increasing the amplitude of the excitation voltages up to the sensing range of the readout circuit. The proposed ROIC was fabricated in a 0.13- ÎĽm\mu \text{m} standard CMOS process and was measured with a 32-in 104 Ă—\times 64 touch-screen panel using 1 and 10 mm metal pillars. It reduces charge overflow up to 33.9 dB compared to operation without AM-MFE. In addition, the ROIC achieves a frame rate of 2.93 kHz, and SNRs of 41.7 and 61.6 dB with 1 and 10 mm metal pillars, respectively.Accepted Author ManuscriptElectronic Instrumentatio
    • …
    corecore