218 research outputs found

    Premature ovarian failure

    Get PDF
    Premature ovarian failure (POF) is a primary ovarian defect characterized by absent menarche (primary amenorrhea) or premature depletion of ovarian follicles before the age of 40 years (secondary amenorrhea). It is a heterogeneous disorder affecting approximately 1% of women <40 years, 1:10,000 women by age 20 and 1:1,000 women by age 30. The most severe forms present with absent pubertal development and primary amenorrhea (50% of these cases due to ovarian dysgenesis), whereas forms with post-pubertal onset are characterized by disappearance of menstrual cycles (secondary amenorrhea) associated with premature follicular depletion. As in the case of physiological menopause, POF presents by typical manifestations of climacterium: infertility associated with palpitations, heat intolerance, flushes, anxiety, depression, fatigue. POF is biochemically characterized by low levels of gonadal hormones (estrogens and inhibins) and high levels of gonadotropins (LH and FSH) (hypergonadotropic amenorrhea). Beyond infertility, hormone defects may cause severe neurological, metabolic or cardiovascular consequences and lead to the early onset of osteoporosis. Heterogeneity of POF is also reflected by the variety of possible causes, including autoimmunity, toxics, drugs, as well as genetic defects. POF has a strong genetic component. X chromosome abnormalities (e.g. Turner syndrome) represent the major cause of primary amenorrhea associated with ovarian dysgenesis. Despite the description of several candidate genes, the cause of POF remains undetermined in the vast majority of the cases. Management includes substitution of the hormone defect by estrogen/progestin preparations. The only solution presently available for the fertility defect in women with absent follicular reserve is ovum donation

    GLIS3 and Thyroid: A Pleiotropic Candidate Gene for Congenital Hypothyroidism

    Get PDF
    Variations in the transcription factor Gli-similar 3 (GLIS3) gene have been associated to variable congenital endocrine defects, including both morphogenetic and functional thyroid alterations. Evidence from Glis3 knockout mice indicates a relevant role for GLIS3 in thyroid hormone biosynthesis and postnatal thyroid gland growth, with a mechanism of action downstream of the TSH/TSHR interaction. However, the pathophysiological role of this transcription factor during the embryonic thyroid development remains unexplored. In this manuscript, we will provide an overview of the current knowledge on GLIS3 function during development. As a perspective, we will present preliminary evidence in the zebrafish model in support of a potential role for this pleiotropic transcription factor in the early stages of thyroid gland development

    Elastographic presentation of medullary thyroid carcinoma

    Get PDF
    Aim of the study was to evaluate the elastographic appearance of medullary thyroid carcinoma (MTC) by a retrospective evaluation of 18 nodules histologically proven as MTC. Free-hand qualitative elastography was performed using Hitachi Logos EUB 7500. The elasticity score (ES), was assessed based on a colour elastogram, the blue colour being correlated with hard tissue, red colour with soft tissue, and green with intermediate hardness. Nodules were classified into four classes. A alleged diagnosis of malignancy was assigned to nodules with ES3 or 4 and a presumptive diagnosis of benignity was assigned to nodules with an ES1 or 2. More than half (55.6 %) of MTCs have a low-intermediate grade of elasticity. The hardest lesions (ES4) were those with ultrasonographic features highly suspicious for malignancy. In conclusion, most of MTCs present an elastographic pattern of benignity. Therefore, qualitative elastography does not add useful information in pointing out MTC on the basis of its hardness. Our data suggest a marginal role for this technique in MTC evaluation

    Optimizing Fertility in Primary Ovarian Insufficiency: Case Report and Literature Review

    Get PDF
    Primary ovarian insufficiency (POI) is a clinical spectrum of ovarian dysfunction. Overt POI presents with oligo/amenorrhea and hypergonadotropic hypogonadism before age 40 years. Overt POI involves chronic health problems to include increased morbidity and mortality related to estradiol deficiency and the associated osteoporosis and cardiovascular disease as well as psychological and psychiatric disorders related to the loss of reproductive hormones and infertility. Presently, with standard clinical testing, a mechanism for Overt POI can only be identified in about 10% of cases. Now discovery of new mechanisms permits an etiology to be identified in a research setting in 25–30% of overt cases. The most common genetic cause of Overt POI is premutation in FMR1. The associated infertility is life altering. Oocyte donation is effective, although many women prefer to conceive with their own ova. Surprisingly, the majority who have Overt POI still have detectable ovarian follicles (70%). The major mechanism of follicle dysfunction in Overt POI has been histologically defined by a prospective NIH study: inappropriate follicle luteinization due to the tonically elevated serum LH levels. A trial of physiologic hormone replacement therapy, clinically proven to suppress the elevated LH levels in these women, may improve follicle function and increase the chance of ovulation. Here, we report the case of a woman with Overt POI diagnosed at age 35 years. To attempt pregnancy, she elected a trial of intrauterine insemination (IUI) in conjunction with follicle monitoring and physiologic hormone replacement therapy. She conceived on the eighth cycle of treatment and delivered a healthy baby. Our report calls for a concerted effort to define the best methods by which to optimize fertility for women who have POI

    The diagnosis and management of central hypothyroidism in 2018

    Get PDF
    Central hypothyrodism (CeH) is a hypothyroid state caused by an insufficient stimulation by thyrotropin (TSH) of an otherwise normal thyroid gland. Several advancements, including the recent publication of expert guidelines for CeH diagnosis and management, have been made in recent years thus increasing the clinical awareness on this condition. Here, we reviewed the recent advancements and give expert opinions on critical issues. Indeed, CeH can be the consequence of various disorders affecting either the pituitary gland or the hypothalamus. Recent data enlarged the list of candidate genes for heritable CeH and a genetic origin may be the underlying cause for CeH discovered in pediatric or even adult patients without apparent pituitary lesions. This raises the doubt that the frequency of CeH may be underestimated. CeH is most frequently diagnosed as a consequence of the biochemical assessments in patients with hypothalamic/pituitary lesions. In contrast with primary hypothyroidism, low FT4 with low/normal TSH levels are the biochemical hallmark of CeH, and adequate thyroid hormone replacement leads to the suppression of residual TSH secretion. Thus, CeH often represents a clinical challenge because physicians cannot rely on the use of the ‘reflex TSH strategy’ for screening or therapy monitoring. Nevertheless, in contrast with general assumption, the finding of normal TSH levels may indicate thyroxine under-replacement in CeH patients. The clinical management of CeH is further complicated by the combination with multiple pituitary deficiencies, as the introduction of sex steroids or GH replacements may uncover latent forms of CeH or increase the thyroxine requirements

    Sex steroid priming in short stature children unresponsive to GH stimulation tests: Why, who, when and how

    Get PDF
    Despite decades of experience, the diagnosis of growth hormone deficiency (GHD) remains challenging, especially in peripubertal children. Failure to respond to GH stimulation tests (GHSTs) is needed to confirm GHD, but long-standing controversies regarding the number of tests needed and the interpretation of GH peaks are still a matter of debate worldwide. Diagnostic workup is even more problematic in short children with slow growth and delayed sexual development: they often exhibit low GH peaks under GHST, which often normalize as puberty progresses. Consequently, this transient suboptimal response to GHST may result in GH overtreatment, carrying both health and economic concerns. Considering the complex and bound link between GH axis and sex steroids, the use of sex steroid priming prior to GHST might be helpful in peripubertal setting. However, its use is still controversial. There is no consensus regarding patient selection, timing, dose, and preparation of sex steroids. In this review, we aim to overview the use of sex steroid priming in clinical practice, highlighting the need to develop appropriate guidelines in order to overcome diagnostic pitfalls in peripubertal age

    8-Chloro-Cyclic AMP and Protein Kinase A I-Selective Cyclic AMP Analogs Inhibit Cancer Cell Growth through Different Mechanisms

    Get PDF
    Cyclic AMP (cAMP) inhibits the proliferation of several tumor cells. We previously reported an antiproliferative effect of PKA I-selective cAMP analogs (8-PIP-cAMP and 8-HA-cAMP) on two human cancer cell lines of different origin. 8-Cl-cAMP, another cAMP analog with known antiproliferative properties, has been investigated as a potential anticancer drug. Here, we compared the antiproliferative effect of 8-Cl-cAMP and the PKA I-selective cAMP analogs in three human cancer cell lines (ARO, NPA and WRO). 8-Cl-cAMP and the PKA I-selective cAMP analogs had similarly potent antiproliferative effects on the BRAF-positive ARO and NPA cells, but not on the BRAF-negative WRO cells, in which only 8-Cl-cAMP consistently inhibited cell growth. While treatment with the PKA I-selective cAMP analogs was associated with growth arrest, 8-Cl-cAMP induced apoptosis. To further investigate the actions of 8-Cl-cAMP and the PKA I-selective cAMP analogs, we analyzed their effects on signaling pathways involved in cell proliferation and apoptosis. Interestingly, the PKA I-selective cAMP analogs, but not 8-Cl-cAMP, inhibited ERK phosphorylation, whereas 8-Cl-cAMP alone induced a progressive phosphorylation of the p38 mitogen-activated protein kinase (MAPK), via activation of AMPK by its metabolite 8-Cl-adenosine. Importantly, the pro-apoptotic effect of 8-Cl-cAMP could be largely prevented by pharmacological inhibition of the p38 MAPK. Altogether, these data suggest that 8-Cl-cAMP and the PKA I-selective cAMP analogs, though of comparable antiproliferative potency, act through different mechanisms. PKA I-selective cAMP analogs induce growth arrest in cells carrying the BRAF oncogene, whereas 8-Cl-cAMP induce apoptosis, apparently through activation of the p38 MAPK pathway

    The complications of male hypogonadism: is it just a matter of low testosterone?

    Get PDF
    The history of diagnosing hypogonadism and hypotestosteronemia shows us the many steps that were necessary to achieve our current knowledge and the ability to improve these patients’ well-being. Moreover, so far, criteria for diagnosing hypotestosteronemia varies according to the underlying condition, and according to the consensus or guideline adopted. Furthermore, besides the many signs and symptoms, there are several complications associated with low testosterone levels such as osteoporosis, metabolic alterations, as well as cardiovascular disorders. However, data are often conflicting regarding the severity, timing or even the real clinical relevance of these complications, although these studies often lack essential information such as gonadotropin levels or the underlying cause of hypogonadism. The present review focus on the complications of male hypogonadism according to the cause of testosterone deficiency, highlighting the lack of information found in many studies investigating its effects. We thereby stress the necessity to always perform a complete evaluation of the type of hypogonadism (including at least gonadotropins and secondary causes) when investigating the effects of low testosterone levels

    Genetic architecture of self-limited delayed puberty and congenital hypogonadotropic hypogonadism

    Get PDF
    Distinguishing between self limited delayed puberty (SLDP) and congenital hypogonadotropic hypogonadism (CHH) may be tricky as they share clinical and biochemical characteristics. and appear to lie within the same clinical spectrum. However, one is classically transient (SDLP) while the second is typically a lifetime condition (CHH). The natural history and long-term outcomes of these two conditions differ significantly and thus command distinctive approaches and management. Because the first presentation of SDLP and CHH is very similar (delayed puberty with low LH and FSH and low sex hormones), the scientific community is scrambling to identify diagnostic tests that can allow a correct differential diagnosis among these two conditions, without having to rely on the presence or absence of phenotypic red flags for CHH that clinicians anyway seem to find hard to process. Despite the heterogeneity of genetic defects so far reported in DP, genetic analysis through next-generation sequencing technology (NGS) had the potential to contribute to the differential diagnostic process between SLDP and CHH. In this review we will provide an up-to-date overview of the genetic architecture of these two conditions and debate the benefits and the bias of performing genetic analysis seeking to effectively differentiate between these two conditions
    • …
    corecore