235 research outputs found

    The History of Astrometry

    Full text link
    The history of astrometry, the branch of astronomy dealing with the positions of celestial objects, is a lengthy and complex chronicle, having its origins in the earliest records of astronomical observations more than two thousand years ago, and extending to the high accuracy observations being made from space today. Improved star positions progressively opened up and advanced fundamental fields of scientific enquiry, including our understanding of the scale of the solar system, the details of the Earth's motion through space, and the comprehension and acceptance of Newtonianism. They also proved crucial to the practical task of maritime navigation. Over the past 400 years, during which positional accuracy has improved roughly logarithmically with time, the distances to the nearest stars were triangulated, making use of the extended measurement baseline given by the Earth's orbit around the Sun. This led to quantifying the extravagantly vast scale of the Universe, to a determination of the physical properties of stars, and to the resulting characterisation of the structure, dynamics and origin of our Galaxy. After a period in the middle years of the twentieth century in which accuracy improvements were greatly hampered by the perturbing effects of the Earth's atmosphere, ultra-high accuracies of star positions from space platforms have led to a renewed advance in this fundamental science over the past few years.Comment: 52 pages, 14 figures. To appear in The European Physical Journal: Historical Perspectives on Contemporary Physic

    Hipparcos: a Retrospective

    Full text link
    The Hipparcos satellite was launched in 1989. It was the first, and remains to date the only, attempt at performing large-scale astrometric measurements from space. Hipparcos marked a fundamentally new approach to the field of astrometry, revolutionising our knowledge of the positions, distances, and space motions of the stars in the solar neighbourhood. In this retrospective, I look back at the processes which led to the mission's acceptance, provide a short summary of the underlying measurement principles and the experiment's scientific achievements, and a conclude with a brief summary of its principal legacy - the Gaia mission.Comment: European Astronomical Society Tycho Brahe Prize Lecture 2011 (18 pages, 4 figures

    The Gaia inertial reference frame and the tilting of the Milky Way disk

    Full text link
    While the precise relationship between the Milky Way disk and the symmetry planes of the dark matter halo remains somewhat uncertain, a time-varying disk orientation with respect to an inertial reference frame seems probable. Hierarchical structure formation models predict that the dark matter halo is triaxial and tumbles with a characteristic rate of ~2 rad/Hubble time (~30 muas/yr). These models also predict a time-dependent accretion of gas, such that the angular momentum vector of the disk should be misaligned with that of the halo. These effects, as well as tidal effects of the LMC, will result in the rotation of the angular momentum vector of the disk population with respect to the quasar reference frame. We assess the accuracy with which the positions and proper motions from Gaia can be referred to a kinematically non-rotating system, and show that the spin vector of the transformation from any rigid self-consistent catalog frame to the quasi-inertial system defined by quasars should be defined to better than 1 muas/yr. Determination of this inertial frame by Gaia will reveal any signature of the disk orientation varying with time, improve models of the potential and dynamics of the Milky Way, test theories of gravity, and provide new insights into the orbital evolution of the Sagittarius dwarf galaxy and the Magellanic Clouds.Comment: 16 pages; accepted for publication in Ap

    The use of aerial photographs for estimating school sizes of cetaceans

    Get PDF
    ENGLISH: The accuracy and precision of dolphin school size estimates based on aerial photograph counts were examined using data collected on recent aerial and ship surveys. These estimates were found to be accurate during a 1979research cruise aboard a tuna purse-seiner; dolphin schools were photographed from the ship’s helicopter, encircled with the purse-seine, and then counted as the dolphins were released from the net. A comparison of photographic estimates with these counts indicated that the relationship was fairly close and gave no indication of significantly differing from 1:1. During a 1980 aerial study, photographic estimates from different schools, passes, and camera formats were compared and were found to be quite precise with a standard deviation of approximately 60/0 of school size. Photographic estimates were also compared with estimates made by aerial observers. Most observers tended to underestimate school size, particularly for large schools. The variability among observers was high, indicating that observers should be individually calibrated. SPANISH: Se examinó la exactitud y la precisión de las estimaciones de la magnitud de los cardúmenes de delfines basadas en el cálculo de las fotografías aéreas, usando los datos obtenidos en los últimos reconocimientos aéreos y de los barcos. En 1979, durante un crucero de investigación en un cerquero atunero, se encontró que estas estimaciones eran acertadas; se fotografiaron los cardúmenes de delfines desde un helicóptero del barco, cercados con la red y luego se contaron a medida que se libraban los delfines de la red. Una comparación de las estimaciones fotográficas con estos cálculos indicó que la relación era bastante aproximada y no hubo indicación que se diferenció significativamente de la razón 1:1. Durante un estudio aéreo en 1980, se compararon las estimaciones fotográficas de diferentes del cardúmenes, en los pases y los formatos de las cámaras y se encontró que eran bastante precisos, con una desviación normal de cerca del 60/0 de la magnitud cardumen. Se compararon también las estimaciones fotográficas con las estimaciones realizadas por los observadores aéreos. La mayoría de los observadores tienden a subestimar la magnitud de los cardúmenes, especialmente los cardúmenes grandes. La variabilidad entre los observadores fue elevada, lo que indica que se deben calibrar individualmente los datos de observadores. (PDF contains 39 pages.

    Astrometric exoplanet detection with Gaia

    Full text link
    We provide a revised assessment of the number of exoplanets that should be discovered by Gaia astrometry, extending previous studies to a broader range of spectral types, distances, and magnitudes. Our assessment is based on a large representative sample of host stars from the TRILEGAL Galaxy population synthesis model, recent estimates of the exoplanet frequency distributions as a function of stellar type, and detailed simulation of the Gaia observations using the updated instrument performance and scanning law. We use two approaches to estimate detectable planetary systems: one based on the S/N of the astrometric signature per field crossing, easily reproducible and allowing comparisons with previous estimates, and a new and more robust metric based on orbit fitting to the simulated satellite data. With some plausible assumptions on planet occurrences, we find that some 21,000 (+/-6000) high-mass (1-15M_J) long-period planets should be discovered out to distances of ~500pc for the nominal 5-yr mission (including at least 1000-1500 around M dwarfs out to 100pc), rising to some 70,000 (+/-20,000) for a 10-yr mission. We indicate some of the expected features of this exoplanet population, amongst them ~25-50 intermediate-period (P~2-3yr) transiting systems.Comment: 41 pages, 12 figures; accepted for publication in Ap

    A Ring of Warm Dust in the HD 32297 Debris Disk

    Full text link
    We report the detection of a ring of warm dust in the edge-on disk surrounding HD 32297 with the Gemini-N/MICHELLE mid-infrared imager. Our N'-band image shows elongated structure consistent with the orientation of the scattered-light disk. The Fnu(11.2 um) = 49.9+/-2.1 mJy flux is significantly above the 28.2+/-0.6 mJy photosphere. Subtraction of the stellar point spread function reveals a bilobed structure with peaks 0.5"-0.6" from the star. An analysis of the stellar component of the SED suggests a spectral type later than A0, in contrast to commonly cited literature values. We fit three-dimensional, single-size grain models of an optically thin dust ring to our image and the SED using a Markov chain Monte Carlo algorithm in a Bayesian framework. The best-fit effective grain sizes are submicron, suggesting the same dust population is responsible for the bulk of the scattered light. The inner boundary of the warm dust is located 0.5"-0.7" (~65 AU) from the star, which is approximately cospatial with the outer boundary of the scattered-light asymmetry inward of 0.5". The addition of a separate component of larger, cooler grains that provide a portion of the 60 um flux improves both the fidelity of the model fit and consistency with the slopes of the scattered-light brightness profiles. Previous indirect estimates of the stellar age (~30 Myr) indicate the dust is composed of debris. The peak vertical optical depths in our models (~0.3-1 x 1e-2) imply that grain-grain collisions likely play a significant role in dust dynamics and evolution. Submicron grains can survive radiation pressure blow-out if they are icy and porous. Similarly, the inferred warm temperatures (130-200 K) suggest that ice sublimation may play a role in truncating the inner disk.Comment: ApJ accepted, 8 pages, 4 figure

    A Search for Exozodiacal Dust and Faint Companions Near Sirius, Procyon, and Altair with the NICMOS Coronagraph

    Get PDF
    We observed Sirius, Altair, and Procyon with the NICMOS Coronagraph on the Hubble Space Telescope to look for scattered light from exozodiacal dust and faint companions within 10 AU from these stars. We did not achieve enough dynamic range to surpass the upper limits set by IRAS on the amount of exo-zodiacal dust in these systems, but we did set strong upper limits on the presence of nearby late-type and sub-stellar companions.Comment: 10 pages, 4 figure

    Challenges in the onboard oil condition monitoring

    Get PDF
    Engine oil is an essential component in modern engines and must fulfil a broad range of duties. The engine oil condition is closely related to the engine performance and to the engine reliability. Different effects during the engine operation cause the formation of contaminants reaching into the oil and degrading the oil condition. Monitoring the oil condition with an onboard sensor could provide information about the current oil status. The available sensor data and their correlation to oil contamination effects is further illustrated and examined. The major challenge to derive a reliable oil condition statement from these data is also discussed in this paper
    corecore