2,603 research outputs found
Nonperturbative renormalization in a scalar model within Light-Front Dynamics
Within the covariant formulation of Light-Front Dynamics, in a scalar model
with the interaction Hamiltonian , we calculate
nonperturbatively the renormalized state vector of a scalar "nucleon" in a
truncated Fock space containing the , and sectors. The
model gives a simple example of non-perturbative renormalization which is
carried out numerically. Though the mass renormalization diverges
logarithmically with the cutoff , the Fock components of the "physical"
nucleon are stable when .Comment: 22 pages, 5 figure
Normal Form and Nekhoroshev stability for nearly-integrable Hamiltonian systems with unconditionally slow aperiodic time dependence
The aim of this paper is to extend the results of Giorgilli and Zehnder for
aperiodic time dependent systems to a case of general nearly-integrable convex
analytic Hamiltonians. The existence of a normal form and then a stability
result are shown in the case of a slow aperiodic time dependence that, under
some smallness conditions, is independent on the size of the perturbation.Comment: Corrected typo in the title and statement of Lemma 3.
The Role of Zero-Modes in the Canonical Quantization of Heavy-Fermion QED in Light-Cone Coordinates
Four-dimensional heavy-fermion QED is studied in light-cone coordinates with
(anti-)periodic field boundary conditions. We carry out a consistent light-cone
canonical quantization of this model using the Dirac algorithm for a system
with first- and second-class constraints. To examine the role of the zero
modes, we consider the quantization procedure in {the }zero-mode {and the
non-zero-mode} sectors separately. In both sectors we obtain the physical
variables and their canonical commutation relations. The physical Hamiltonian
is constructed via a step-by-step exclusion of the unphysical degrees of
freedom. An example using this Hamiltonian in which the zero modes play a role
is the verification of the correct Coulomb potential between two heavy
fermions.Comment: 22 pages, CWRUTH-93-5 (Latex
Harmonics generation in electron-ion collisions in a short laser pulse
Anomalously high generation efficiency of coherent higher field-harmonics in
collisions between {\em oppositely charged particles} in the field of
femtosecond lasers is predicted. This is based on rigorous numerical solutions
of a quantum kinetic equation for dense laser plasmas which overcomes
limitations of previous investigations.Comment: 4 pages, 4 eps-figures include
Momentarily Excessive Construction As The Basis For Protoadaptation
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137522/1/evo04677.pd
Vacuum Structures in Hamiltonian Light-Front Dynamics
Hamiltonian light-front dynamics of quantum fields may provide a useful
approach to systematic non-perturbative approximations to quantum field
theories. We investigate inequivalent Hilbert-space representations of the
light-front field algebra in which the stability group of the light-front is
implemented by unitary transformations. The Hilbert space representation of
states is generated by the operator algebra from the vacuum state. There is a
large class of vacuum states besides the Fock vacuum which meet all the
invariance requirements. The light-front Hamiltonian must annihilate the vacuum
and have a positive spectrum. We exhibit relations of the Hamiltonian to the
nontrivial vacuum structure.Comment: 16 pages, report \# ANL-PHY-7524-TH-93, (Latex
Recommended from our members
Attribution-based motivation treatment efficacy in an online learning environment for students who differ in cognitive elaboration
Attribution-based motivation treatments can boost performance in competitive achievement settings (Perry and Hamm 2017), yet their efficacy relative to mediating processes and affect-based treatments remains largely unexamined. In a two-semester, pre-post, randomized treatment study (n = 806), attributional retraining (AR) and stress-reduction (SR) treatments were administered in an online learning environment to first-year college students who differed in cognitive elaboration (low, high). Low elaborators who received AR outperformed their SR peers by nearly a letter grade on a class test assessed 5 months post-treatment. Path analysis revealed this AR-performance linkage was mediated by causal attributions, perceived control, and positive and negative achievement emotions in a hypothesized causal sequence. Results advance the literature by showing AR (vs. SR) improved performance indirectly via cognitive and affective process variables specified by Weiner’s (1985a, 2012) attribution theory of motivation and emotion
Nonperturbative Light-Front QCD
In this work the determination of low-energy bound states in Quantum
Chromodynamics is recast so that it is linked to a weak-coupling problem. This
allows one to approach the solution with the same techniques which solve
Quantum Electrodynamics: namely, a combination of weak-coupling diagrams and
many-body quantum mechanics. The key to eliminating necessarily nonperturbative
effects is the use of a bare Hamiltonian in which quarks and gluons have
nonzero constituent masses rather than the zero masses of the current picture.
The use of constituent masses cuts off the growth of the running coupling
constant and makes it possible that the running coupling never leaves the
perturbative domain. For stabilization purposes an artificial potential is
added to the Hamiltonian, but with a coefficient that vanishes at the physical
value of the coupling constant. The weak-coupling approach potentially
reconciles the simplicity of the Constituent Quark Model with the complexities
of Quantum Chromodynamics. The penalty for achieving this perturbative picture
is the necessity of formulating the dynamics of QCD in light-front coordinates
and of dealing with the complexities of renormalization which such a
formulation entails. We describe the renormalization process first using a
qualitative phase space cell analysis, and we then set up a precise similarity
renormalization scheme with cutoffs on constituent momenta and exhibit
calculations to second order. We outline further computations that remain to be
carried out. There is an initial nonperturbative but nonrelativistic
calculation of the hadronic masses that determines the artificial potential,
with binding energies required to be fourth order in the coupling as in QED.
Next there is a calculation of the leading radiative corrections to these
masses, which requires our renormalization program. Then the real struggle of
finding the right extensions to perturbation theory to study the
strong-coupling behavior of bound states can begin.Comment: 56 pages (REVTEX), Report OSU-NT-94-28. (figures not included,
available via anaonymous ftp from pacific.mps.ohio-state.edu in subdirectory
pub/infolight/qcd
A new practical method to evaluate the Joule-Thomson coefficient for natural gases
© 2017, The Author(s). The Joule–Thomson (JT) phenomenon, the study of fluid temperature changes for a given pressure change at constant enthalpy, has great technological and scientific importance for designing, maintenance and prediction of hydrocarbon production. The phenomenon serves vital role in many facets of hydrocarbon production, especially associated with reservoir management such as interpretation of temperature logs of production and injection well, identification of water and gas entry locations in multilayer production scenarios, modelling of thermal response of hydrocarbon reservoirs and prediction of wellbore flowing temperature profile. The purpose of this study is to develop a new method for the evaluation of JT coefficient, as an essential parameter required to account the Joule–Thomson effects while predicting the flowing temperature profile for gas production wells. To do this, a new correction factor, CNM, has been developed through numerical analysis and proposed a practical method to predict CNM which can simplify the prediction of flowing temperature for gas production wells while accounting the Joule–Thomson effect. The developed correlation and methodology were validated through an exhaustive survey which has been conducted with 20 different gas mixture samples. For each sample, the model has been run for a wide range of temperature and pressure conditions, and the model was rigorously verified by comparison of the results estimated throughout the study with the results obtained from HYSYS and Peng–Robinson equation of state. It is observed that model is very simple and robust yet can accurately predict the Joule–Thomson effect
- …