research

Normal Form and Nekhoroshev stability for nearly-integrable Hamiltonian systems with unconditionally slow aperiodic time dependence

Abstract

The aim of this paper is to extend the results of Giorgilli and Zehnder for aperiodic time dependent systems to a case of general nearly-integrable convex analytic Hamiltonians. The existence of a normal form and then a stability result are shown in the case of a slow aperiodic time dependence that, under some smallness conditions, is independent on the size of the perturbation.Comment: Corrected typo in the title and statement of Lemma 3.

    Similar works