21,536 research outputs found

    Quarkonia in Hamiltonian Light-Front QCD

    Full text link
    A constituent parton picture of hadrons with logarithmic confinement naturally arises in weak coupling light-front QCD. Confinement provides a mass gap that allows the constituent picture to emerge. The effective renormalized Hamiltonian is computed to O(g2){\cal O}(g^2), and used to study charmonium and bottomonium. Radial and angular excitations can be used to fix the coupling α\alpha, the quark mass MM, and the cutoff Λ\Lambda. The resultant hyperfine structure is very close to experiment.Comment: 9 pages, 1 latex figure included in the text. Published version (much more reader-friendly); corrected error in self-energ

    Operator Evolution via the Similarity Renormalization Group I: The Deuteron

    Get PDF
    Similarity Renormalization Group (SRG) flow equations can be used to unitarily soften nuclear Hamiltonians by decoupling high-energy intermediate state contributions to low-energy observables while maintaining the natural hierarchy of many-body forces. Analogous flow equations can be used to consistently evolve operators so that observables are unchanged if no approximations are made. The question in practice is whether the advantages of a softer Hamiltonian and less correlated wave functions might be offset by complications in approximating and applying other operators. Here we examine the properties of SRG-evolved operators, focusing in this paper on applications to the deuteron but leading toward methods for few-body systems. We find the advantageous features generally carry over to other operators with additional simplifications in some cases from factorization of the unitary transformation operator.Comment: 33 pages, 19 figures. Improved figures 17 and 18. Expanded comments on OPE in tex

    Operator Evolution via the Similarity Renormalization Group I: The Deuteron

    Get PDF
    Similarity Renormalization Group (SRG) flow equations can be used to unitarily soften nuclear Hamiltonians by decoupling high-energy intermediate state contributions to low-energy observables while maintaining the natural hierarchy of many-body forces. Analogous flow equations can be used to consistently evolve operators so that observables are unchanged if no approximations are made. The question in practice is whether the advantages of a softer Hamiltonian and less correlated wave functions might be offset by complications in approximating and applying other operators. Here we examine the properties of SRG-evolved operators, focusing in this paper on applications to the deuteron but leading toward methods for few-body systems. We find the advantageous features generally carry over to other operators with additional simplifications in some cases from factorization of the unitary transformation operator.Comment: 33 pages, 19 figures. Improved figures 17 and 18. Expanded comments on OPE in tex

    Are low-energy nuclear observables sensitive to high-energy phase shifts?

    Get PDF
    Conventional nucleon-nucleon potentials with strong short-range repulsion require contributions from high-momentum wave function components even for low-energy observables such as the deuteron binding energy. This can lead to the misconception that reproducing high-energy phase shifts is important for such observables. Interactions derived via the similarity renormalization group decouple high-energy and low-energy physics while preserving the phase shifts from the starting potential. They are used to show that high-momentum components (and high-energy phase shifts) can be set to zero when using low-momentum interactions, without losing information relevant for low-energy observables.Comment: 13 pages, 5 figures; reference and acknowledgment adde

    Orbital Properties of Sr3Ru2O7 and Related Ruthenates Probed by 17O-NMR

    Get PDF
    We report a site-separated 17^{17}O-NMR study of the layered perovskite ruthenate Sr3_3Ru2_2O7_7, which exhibits nearly two-dimensional transport properties and itinerant metamagnetism at low temperatures. The local hole occupancies and the spin densities in the oxygen 2p2p orbitals are obtained by means of tight-binding analyses of electric field gradients and anisotropic Knight shifts. These quantities are compared with two other layered perovskite ruthenates: the two-dimensional paramagnet Sr2_2RuO4_4 and the three-dimensional ferromagnet SrRuO3_3. The hole occupancies at the oxygen sites are very large, about one hole per ruthenium atom. This is due to the strong covalent character of the Ru-O bonding in this compound. The magnitude of the hole occupancy might be related to the rotation or tilt of the RuO6_6 octahedra. The spin densities at the oxygen sites are also large, 20-40% of the bulk susceptibilities, but in contrast to the hole occupancies, the spin densities strongly depend on the dimensionality. This result suggests that the density-of-states at the oxygen sites plays an essential role for the understanding of the complex magnetism found in the layered perovskite ruthenates.Comment: 9 pages, 5 figures, to be published in Phys. Rev.

    Note on restoring manifest rotational symmetry in hyperfine and fine structure in light-front QED

    Get PDF
    We study the part of the renormalized, cutoff QED light-front Hamiltonian that does not change particle number. The Hamiltonian contains interactions that must be treated in second-order bound state perturbation theory to obtain hyperfine structure. We show that a simple unitary transformation leads directly to the familiar Breit-Fermi spin-spin and tensor interactions, which can be treated in degenerate first-order bound-state perturbation theory, thus simplifying analytic light-front QED calculations. To the order in momenta we need to consider, this transformation is equivalent to a Melosh rotation. We also study how the similarity transformation affects spin-orbit interactions.Comment: 17 pages, latex fil

    Implementing the Lean Sigma Framework in an Indian SME: a case study

    Get PDF
    Lean and Six Sigma are two widely acknowledged business process improvement strategies available to organisations today for achieving dramatic results in cost, quality and time by focusing on process performance. Lately, Lean and Six Sigma practitioners are integrating the two strategies into a more powerful and effective hybrid, addressing many of the weaknesses and retaining most of the strengths of each strategy. Lean Sigma combines the variability reduction tools and techniques from Six Sigma with the waste and non-value added elimination tools and techniques from Lean Manufacturing, to generate savings to the bottom-line of an organisation. This paper proposes a Lean Sigma framework to reduce the defect occurring in the final product (automobile accessories) manufactured by a die-casting process. The proposed framework integrates Lean tools (current state map, 5S System, and Total Productive Maintenance (TPM)) within Six Sigma DMAIC methodology to enhance the bottom-line results and win customer loyalty. Implementation of the proposed framework shows dramatic improvement in the key metrics (defect per unit (DPU), process capability index, mean and standard deviation of casting density, yield, and overall equipment effectiveness (OEE)) and a substantial financial savings is generated by the organisation

    Perturbative Tamm-Dancoff Renormalization

    Full text link
    A new two-step renormalization procedure is proposed. In the first step, the effects of high-energy states are considered in the conventional (Feynman) perturbation theory. In the second step, the coupling to many-body states is eliminated by a similarity transformation. The resultant effective Hamiltonian contains only interactions which do not change particle number. It is subject to numerical diagonalization. We apply the general procedure to a simple example for the purpose of illustration.Comment: 20 pages, RevTeX, 10 figure
    corecore