25 research outputs found

    Mass spectrometry and multivariate analysis to classify cervical intraepithelial neoplasia from blood plasma: an untargeted lipidomic study

    Get PDF
    Cervical cancer is still an important issue of public health since it is the fourth most frequent type of cancer in women worldwide. Much effort has been dedicated to combating this cancer, in particular by the early detection of cervical pre-cancerous lesions. For this purpose, this paper reports the use of mass spectrometry coupled with multivariate analysis as an untargeted lipidomic approach to classifying 76 blood plasma samples into negative for intraepithelial lesion or malignancy (NILM, n = 42) and squamous intraepithelial lesion (SIL, n = 34). The crude lipid extract was directly analyzed with mass spectrometry for untargeted lipidomics, followed by multivariate analysis based on the principal component analysis (PCA) and genetic algorithm (GA) with support vector machines (SVM), linear (LDA) and quadratic (QDA) discriminant analysis. PCA-SVM models outperformed LDA and QDA results, achieving sensitivity and specificity values of 80.0% and 83.3%, respectively. Five types of lipids contributing to the distinction between NILM and SIL classes were identified, including prostaglandins, phospholipids, and sphingolipids for the former condition and Tetranor-PGFM and hydroperoxide lipid for the latter. These findings highlight the potentiality of using mass spectrometry associated with chemometrics to discriminate between healthy women and those suffering from cervical pre-cancerous lesions

    Protein Kinase CΞ΄ Stimulates Proteasome-Dependent Degradation of C/EBPΞ± during Apoptosis Induction of Leukemic Cells

    Get PDF
    BACKGROUND:The precise regulation and maintenance of balance between cell proliferation, differentiation and death in metazoan are critical for tissue homeostasis. CCAAT/enhancer-binding protein alpha (C/EBPalpha) has been implicated as a key regulator of differentiation and proliferation in various cell types. Here we investigated the potential dynamic change and role of C/EBPalpha protein during apoptosis induction. METHODOLOGY/PRINCIPAL FINDINGS:Upon onset of apoptosis induced by various kinds of inducers such as NSC606985, etoposide and others, C/EBPalpha expression presented a profound down-regulation in leukemic cell lines and primary cells via induction of protein degradation and inhibition of transcription, as assessed respectively by cycloheximide inhibition test, real-time quantitative RT-PCR and luciferase reporter assay. Applying chemical inhibition, forced expression of dominant negative mutant and catalytic fragment (CF) of protein kinase Cdelta (PKCdelta), which was proteolytically activated during apoptosis induction tested, we showed that the active PKCdelta protein contributed to the increased degradation of C/EBPalpha protein. Three specific proteasome inhibitors antagonized C/EBPalpha degradation during apoptosis induction. More importantly, ectopic expression of PKCdelta-CF stimulated the ubiquitination of C/EBPalpha protein, while the chemical inhibition of PKCdelta action significantly inhibited the enhanced ubiquitination of C/EBPalpha protein under NSC606985 treatment. Additionally, silencing of C/EBPalpha expression by small interfering RNAs enhanced, while inducible expression of C/EBPalpha inhibited NSC606985/etoposide-induced apoptosis in leukemic cells. CONCLUSIONS/SIGNIFICANCE:These observations indicate that the activation of PKCdelta upon apoptosis results in the increased proteasome-dependent degradation of C/EBPalpha, which partially contributes to PKCdelta-mediated apoptosis

    Medicolegal aspects of minimally invasive urologic surgery

    No full text
    Among the myriad concerns and complexities for the practicing urologist, the potential for medical malpractice claims is one of the most troubling and frustrating situations. The physician is often unknowledgeable and poorly prepared for these events, with little emphasis on this aspect of medicine in either medical school or residency training. Only when these unfortunate cases arise does one obtain on-the-job training regarding our legal system, tort law, risk management, and how to avoid malpractice litigation. Herein we discuss relevant medicolegal issues for urologists performing laparoscopic and robotic-assisted procedures. Β© 2010 Humana Press

    Loss of protein phosphatase 2A regulatory subunit B56Ξ΄ promotes spontaneous tumorigenesis in vivo.

    No full text
    Protein Phosphatase 2A (PP2A) enzymes counteract diverse kinase-driven oncogenic pathways and their function is frequently impaired in cancer. PP2A inhibition is indispensable for full transformation of human cells, but whether loss of PP2A is sufficient for tumorigenesis in vivo has remained elusive. Here, we describe spontaneous tumor development in knockout mice for Ppp2r5d, encoding the PP2A regulatory B56Ξ΄ subunit. Several primary tumors were observed, most commonly, hematologic malignancies and hepatocellular carcinomas (HCCs). Targeted immunoblot and immunohistochemistry analysis of the HCCs revealed heterogeneous activation of diverse oncogenic pathways known to be suppressed by PP2A-B56. RNA sequencing analysis unveiled, however, a common role for oncogenic c-Myc activation in the HCCs, independently underscored by c-Myc Ser62 hyperphosphorylation. Upstream of c-Myc, GSK-3Ξ² Ser9 hyperphosphorylation occurred both in the HCCs and non-cancerous B56Ξ΄-null livers. Thus, uncontrolled c-Myc activity due to B56Ξ΄-driven GSK-3Ξ² inactivation is the likely tumor predisposing factor. Our data provide the first compelling mouse genetics evidence sustaining the tumor suppressive activity of a single PP2A holoenzyme, constituting the final missing incentive for full clinical development of PP2A as cancer biomarker and therapy target.Oncogene advance online publication, 2 October 2017; doi:10.1038/onc.2017.350
    corecore