6 research outputs found

    OMNI: Open Mind Neuromodulation Interface for accelerated research and discovery

    Get PDF
    Electrical neuromodulation is an approved therapy for a number of neurologic disease states, including Parkinson's disease (PD), Obsessive Compulsive Disorder, Essential Tremor, epilepsy and neuropathic pain. Neuromodulatory strategies are also being piloted for an increasing number of additional indications, including Major Depressive Disorder, Dystonia, and addiction. The development of implantable devices capable of both neural sensing and adaptive stimulation may prove essential for both improving therapeutic outcomes and expanding the neuromodulation indication space. Nevertheless, an increasingly fragmented device ecosystem forces researchers and therapy developers to customize and reinvent data visualization, clinician engagement, and device control software to support individual clinical studies. Each hardware platform provides a unique software interface to the implanted neurostimulator, making pre-existing code from prior studies difficult to leverage for future work - a hindrance that will expand as device technology diversifies. Here, we envision, detail, and demonstrate the use of a novel software architecture, OMNI, that accelerates neuromodulation research by providing a flexible, platform- and device-agnostic interface for clinical research and therapy development

    Embedded adaptive deep brain stimulation for cervical dystonia controlled by motor cortex theta oscillations

    No full text
    Dystonia is a disabling movement disorder characterized by excessive muscle contraction for which the underlying pathophysiology is incompletely understood and treatment interventions limited in efficacy. Here we utilize a novel, sensing-enabled, deep brain stimulator device, implanted in a patient with cervical dystonia, to record local field potentials from chronically implanted electrodes in the sensorimotor cortex and subthalamic nuclei bilaterally. This rechargeable device was able to record large volumes of neural data at home, in the naturalistic environment, during unconstrained activity. We confirmed the presence of theta (3–7 Hz) oscillatory activity, which was coherent throughout the cortico-subthalamic circuit and specifically suppressed by high-frequency stimulation. Stimulation also reduced the duration, rate and height of theta bursts. These findings motivated a proof-of-principle trial of a new form of adaptive deep brain stimulation - triggered by theta-burst activity recorded from the motor cortex. This facilitated increased peak stimulation amplitudes without induction of dyskinesias and demonstrated improved blinded clinical ratings compared to continuous DBS, despite reduced total electrical energy delivered. These results further strengthen the pathophysiological role of low frequency (theta) oscillations in dystonia and demonstrate the potential for novel adaptive stimulation strategies linked to cortico-basal theta bursts
    corecore