307 research outputs found

    Polycystic kidney disease in patients on the renal transplant waiting list: trends in hematocrit and survival

    Get PDF
    BACKGROUND: The patient characteristics and mortality associated with autosomal dominant polycystic kidney disease (PKD) have not been characterized for a national sample of end stage renal disease (ESRD) patients on the renal transplant waiting list. METHODS: 40,493 patients in the United States Renal Data System who were initiated on ESRD therapy between 1 April 1995 and 29 June 1999 and later enrolled on the renal transplant waiting list were analyzed in an historical cohort study of the relationship between hematocrit at the time of presentation to ESRD and survival (using Cox Regression) in patients with PKD as a cause of ESRD. RESULTS: Hematocrit levels at presentation to ESRD increased significantly over more recent years of the study. Hematocrit rose in parallel in patients with and without PKD, but patients with PKD had consistently higher hemoglobin. PKD was independently associated with higher hematocrit in multiple linear regression analysis (p < 0.0001). In logistic regression, higher hematocrit was independently associated with PKD. In Cox Regression analysis, PKD was associated with statistically significant improved survival both in comparison with diabetic (hazard ratio, 0.64, 95% CI 0.53–0.77, p < 0.001) and non-diabetic (HR 0.68, 95% CI 0.56–0.82, p = 0.001) ESRD patients, adjusted for all other factors. CONCLUSIONS: Hematocrit at presentation to ESRD was significantly higher in patients with PKD compared with patients with other causes of ESRD. The survival advantage of PKD in ESRD persisted even adjusted for differences in hematocrit and in comparison with patients on the renal transplant waiting list

    Creatinine clearance versus serum creatinine as a risk factor in cardiac surgery

    Get PDF
    BACKGROUND: Renal impairment is one of the predictors of mortality in cardiac surgery. Usually a binarized value of serum creatinine is used to assess the renal function in risk models. Creatinine clearance can be easily estimated by the Cockcroft and Gault equation from serum creatinine, gender, age and body weight. In this work we examine whether this estimation of the glomerular filtration rate can advantageously replace the serum creatinine in the EuroSCORE preoperative risk assessment. METHODS: In a group of 8138 patients out of a total of 11878 patients, who underwent cardiac surgery in our hospital between January 1996 and July 2002, the 18 standard EuroSCORE parameters could retrospectively be determined and logistic regression analysis performed. In all patients scored, creatinine clearance was calculated according to Cockcroft and Gault. The relationship between the predicted and observed 30-days mortality was evaluated in systematically selected intervals of creatinine clearance and significance values computed by employing Monte Carlo methods. Afterwards, risk scoring was performed using a continuous or a categorical value of creatinine clearance instead of serum creatinine. The predictive ability of several risk score models and the individual contribution of their predictor variables were studied using ROC curve analysis. RESULTS: The comparison between the expected and observed 30-days mortalities, which were determined in different intervals of creatinine clearance, revealed the best threshold value of 55 ml/min. A significantly higher 30-days mortality was observed below this threshold and vice versa (both with p < 0.001). The local adaptation of the EuroSCORE is better than the standard EuroSCORE and was further improved by replacing serum creatinine (SC) by creatinine clearance (CC). Differential ROC analysis revealed that CC is superior to SC in providing predictive power within the logistic regression. Variable rank comparison identified CC as the best single variable predictor, even better than the variable age, former number 1, and SC, previously number 9 in the standard set of EuroSCORE variables. CONCLUSION: The renal function is an important determinant of mortality in heart surgery. This risk factor is not well captured in the standard EuroSCORE risk evaluation system. Our study shows that creatinine clearance, calculated according to the Cockcroft and Gault equation, should be applied to estimate the preoperative renal function instead of serum creatinine. This predictor variable replacement gains a significant improvement in the predictive accuracy of the scoring model

    Acute Treatment Effects on GFR in Randomized Clinical Trials of Kidney Disease Progression

    Full text link
    Background Acute changes in GFR can occur after initiation of interventions targeting progression of CKD. These acute changes complicate the interpretation of long-term treatment effects. Methods To assess the magnitude and consistency of acute effects in randomized clinical trials and explore factors that might affect them, we performed a meta-analysis of 53 randomized clinical trials for CKD progression, enrolling 56,413 participants with at least one estimated GFR measurement by 6 months after randomization. We defined acute treatment effects as the mean difference in GFR slope from baseline to 3 months between randomized groups. We performed univariable and multivariable metaregression to assess the effect of intervention type, disease state, baseline GFR, and albuminuria on the magnitude of acute effects. Results The mean acute effect across all studies was 20.21 ml/min per 1.73 m2 (95% confidence interval, 20.63 to 0.22) over 3 months, with substantial heterogeneity across interventions (95% coverage interval across studies, 22.50 to 12.08 ml/min per 1.73 m2). We observed negative average acute effects in renin angiotensin system blockade, BP lowering, and sodium-glucose cotransporter 2 inhibitor trials, and positive acute effects in trials of immunosuppressive agents. Larger negative acute effects were observed in trials with a higher mean baseline GFR. Conclusion The magnitude and consistency of acute GFR effects vary across different interventions, and are larger at higher baseline GFR. Understanding the nature and magnitude of acute effects can help inform the optimal design of randomized clinical trials evaluating disease progression in CKD

    MDRD or CKD-EPI study equations for estimating prevalence of stage 3 CKD in epidemiological studies: which difference? Is this difference relevant?

    Get PDF
    Background: Prevalence of stage 3 chronic kidney disease (CKD) is increasing according to the NHANES study. Prevalence has been calculated using the MDRD study equation for estimating glomerular filtration rate (GFR). Recently, a new estimator based on creatinine, the CKD-EPI equation, has been proposed which is presumed to better perform in normal GFR ranges. The aim of the study was to measure the difference in prevalence of stage 3 CKD in a population using either the MDRD or the CKD-EPI study equations. Methods: CKDscreening is organized in the Province of Liège, Belgium. On a voluntary basis, people aged between 45 and 75 years are invited to be screened. GFR is estimated by the MDRD study equation and by the "new" CKD-EPI equations. Results: The population screened consisted in 1992 people (47% of men). Mean serum creatinine was 0.86 ± 0.20 mg/dl. The prevalence of stage 3 CKD in this population using the MDRD or the CKD-EPI equations was 11.04 and 7.98%, respectively. The prevalence of stage 3 CKD is significantly higher with the MDRD study equation (p <0,0012). Conclusions: Prevalence of stage 3 CKDvaries strongly following the method used for estimating GFR, MDRD or CKDEPI study equations. Such discrepancies are of importance and must be confirmed and explained by additional studies using GFR measured with a reference method

    The impact of different GFR estimating equations on the prevalence of CKD and risk groups in a Southeast Asian cohort using the new KDIGO guidelines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently, the Kidney Disease: Improving Global Outcomes (KDIGO) group recommended that patients with CKD should be assigned to stages and composite relative risk groups according to GFR (G) and proteinuria (A) criteria. Asians have among the highest rates of ESRD in the world, but establishing the prevalence and prognosis CKD is a problem for Asian populations since there is no consensus on the best GFR estimating (eGFR) equation. We studied the effects of the choice of new Asian and Caucasian eGFR equations on CKD prevalence, stage distribution, and risk categorization using the new KDIGO classification.</p> <p>Methods</p> <p>The prevalence of CKD and composite relative risk groups defined by eGFR from with Chronic Kidney Disease-Epidemiology Collaboration (CKD-EPI); standard (S) or Chinese(C) MDRD; Japanese CKD-EPI (J-EPI), Thai GFR (T-GFR) equations were compared in a Thai cohort (n = 5526)</p> <p>Results</p> <p>There was a 7 fold difference in CKD<sub>3-5 </sub>prevalence between J-EPI and the other Asian eGFR formulae. CKD<sub>3-5 </sub>prevalence with S-MDRD and CKD-EPI were 2 - 3 folds higher than T-GFR or C-MDRD. The concordance with CKD-EPI to diagnose CKD<sub>3-5 </sub>was over 90% for T-GFR or C-MDRD, but they only assigned the same CKD stage in 50% of the time. The choice of equation also caused large variations in each composite risk groups especially those with mildly increased risks. Different equations can lead to a reversal of male: female ratios. The variability of different equations is most apparent in older subjects. Stage G3aA1 increased with age and accounted for a large proportion of the differences in CKD<sub>3-5 </sub>between CKD-EPI, S-MDRD and C-MDRD.</p> <p>Conclusions</p> <p>CKD prevalence, sex ratios, and KDIGO composite risk groupings varied widely depending on the equation used. More studies are needed to define the best equation for Asian populations.</p

    Change in albuminuria as a surrogate endpoint for progression of kidney disease: a meta-analysis of treatment effects in randomised clinical trials

    Get PDF
    Background Change in albuminuria has strong biological plausibility as a surrogate endpoint for progression of chronic kidney disease, but empirical evidence to support its validity is lacking. We aimed to determine the association between treatment effects on early changes in albuminuria and treatment effects on clinical endpoints and surrograte endpoints, to inform the use of albuminuria as a surrogate endpoint in future randomised controlled trials. Methods In this meta-analysis, we searched PubMed for publications in English from Jan 1, 1946, to Dec 15, 2016, using search terms including “chronic kidney disease”, “chronic renal insufficiency”, “albuminuria”, “proteinuria”, and “randomized controlled trial”; key inclusion criteria were quantifiable measurements of albuminuria or proteinuria at baseline and within 12 months of follow-up and information on the incidence of end-stage kidney disease. We requested use of individual patient data from the authors of eligible studies. For all studies that the authors agreed to participate and that had sufficient data, we estimated treatment effects on 6-month change in albuminuria and the composite clinical endpoint of treated end-stage kidney disease, estimated glomerular filtration rate of less than 15 mL/min per 1·73 m2, or doubling of serum creatinine. We used a Bayesian mixed-effects meta-regression analysis to relate the treatment effects on albuminuria to those on the clinical endpoint across studies and developed a prediction model for the treatment effect on the clinical endpoint on the basis of the treatment effect on albuminuria. Findings We identified 41 eligible treatment comparisons from randomised trials (referred to as studies) that provided sufficient patient-level data on 29 979 participants (21 206 [71%] with diabetes). Over a median follow-up of 3·4 years (IQR 2·3–4·2), 3935 (13%) participants reached the composite clinical endpoint. Across all studies, with a meta-regression slope of 0·89 (95% Bayesian credible interval [BCI] 0·13–1·70), each 30% decrease in geometric mean albuminuria by the treatment relative to the control was associated with an average 27% lower hazard for the clinical endpoint (95% BCI 5–45%; median R2 0·47, 95% BCI 0·02–0·96). The association strengthened after restricting analyses to patients with baseline albuminuria of more than 30 mg/g (ie, 3·4 mg/mmol; R2 0·72, 0·05–0·99]). For future trials, the model predicts that treatments that decrease the geometric mean albuminuria to 0·7 (ie, 30% decrease in albuminuria) relative to the control will provide an average hazard ratio (HR) for the clinical endpoint of 0·68, and 95% of sufficiently large studies would have HRs between 0·47 and 0·95. Interpretation Our results support a role for change in albuminuria as a surrogate endpoint for the progression of chronic kidney disease, particularly in patients with high baseline albuminuria; for patients with low baseline levels of albuminuria this association is less certain

    Glomerular filtration rate and prevalence of chronic kidney disease in Wilms’ tumour survivors

    Get PDF
    Glomerular filtration rate (GFR) was evaluated in 32 Wilms’ tumour survivors (WTs) in a cross-sectional study using 99 Tc-diethylene triamine pentaacetic acid (99 Tc-DTPA) clearance, the Schwartz formula, the new Schwartz equation for chronic kidney disease (CKD), cystatin C serum concentration and the Filler formula. Kidney damage was established by beta-2-microglobulin (B-2-M) and albumin urine excretion, urine sediment and ultrasound examination. Blood pressure was measured. No differences were found between the mean GFR in 99 Tc-DTPA and the new Schwartz equation for CKD (91.8 ± 11.3 vs. 94.3 ± 10.2 ml/min/1.73 m2 [p = 0.55] respectively). No differences were observed between estimated glomerular filtration rate (eGFR) using the Schwartz formula and the Filler formula either (122.3 ± 19.9 vs. 129.8 ± 23.9 ml/min/1.73 m2 [p = 0.28] respectively). Increased urine albumin and B-2-M excretion, which are signs of kidney damage, were found in 7 (22%) and 3 (9.4%) WTs respectively. Ultrasound signs of kidney damage were found in 14 patients (43%). Five patients (15.6%) had more than one sign of kidney damage. Eighteen individuals (56.25%) had CKD stage I (10 with signs of kidney damage; 8 without). Fourteen individuals (43.75%) had CKD stage II (6 with signs of kidney damage; 8 without). The new Schwartz equation for CKD better estimated GFR in comparison to the Schwartz formula and the Filler formula. Furthermore, the WT survivors had signs of kidney damage despite the fact that GFR was not decreased below 90 ml/min/1.73 m2 with 99 Tc- DTPA
    corecore