12,697 research outputs found
Sound velocity and absorption measurements under high pressure using picosecond ultrasonics in diamond anvil cell. Application to the stability study of AlPdMn
We report an innovative high pressure method combining the diamond anvil cell
device with the technique of picosecond ultrasonics. Such an approach allows to
accurately measure sound velocity and attenuation of solids and liquids under
pressure of tens of GPa, overcoming all the drawbacks of traditional
techniques. The power of this new experimental technique is demonstrated in
studies of lattice dynamics, stability domain and relaxation process in a
metallic sample, a perfect single-grain AlPdMn quasicrystal, and rare gas, neon
and argon. Application to the study of defect-induced lattice stability in
AlPdMn up to 30 GPa is proposed. The present work has potential for application
in areas ranging from fundamental problems in physics of solid and liquid
state, which in turn could be beneficial for various other scientific fields as
Earth and planetary science or material research
Work distribution functions for hysteresis loops in a single-spin system
We compute the distribution of the work done in driving a single Ising spin
with a time-dependent magnetic field. Using Glauber dynamics we perform
Monte-Carlo simulations to find the work distributions at different driving
rates. We find that in general the work-distributions are broad with a
significant probability for processes with negative dissipated work. The
special cases of slow and fast driving rates are studied analytically. We
verify that various work fluctuation theorems corresponding to equilibrium
initial states are satisfied while a steady state version is not.Comment: 9 pages, 15 figure
A superfluid He3 detector for direct dark matter search
MACHe3 (MAtrix of Cells of superfluid He3) is a project of a new detector for
direct Dark Matter Search. The idea is to use superfluid He3 as a sensitive
medium. The existing device, the superfluid He3 cell, will be briefly
introduced. Then a description of the MACHe3 project will be presented, in
particular the background rejection and the neutralino event rate that may be
achieved with such a device.Comment: 6 pages, 3 figures, Proceedings of the 3rd International Workshop on
the Identification of Dark Matter (York, UK, 09/18/2000-09/22/2000
Three-dimensional Gross-Pitaevskii solitary waves in optical lattices: stabilization using the artificial quartic kinetic energy induced by lattice shaking
In this Letter, we show that a three-dimensional Bose-Einstein solitary wave
can become stable if the dispersion law is changed from quadratic to quartic.
We suggest a way to realize the quartic dispersion, using shaken optical
lattices. Estimates show that the resulting solitary waves can occupy as little
as -th of the Brillouin zone in each of the three directions and
contain as many as atoms, thus representing a \textit{fully
mobile} macroscopic three-dimensional object.Comment: 8 pages, 1 figure, accepted in Phys. Lett.
A ring trap for ultracold atoms
We propose a new kind of toroidal trap, designed for ultracold atoms. It
relies on a combination of a magnetic trap for rf-dressed atoms, which creates
a bubble-like trap, and a standing wave of light. This new trap is well suited
for investigating questions of low dimensionality in a ring potential. We study
the trap characteristics for a set of experimentally accessible parameters. A
loading procedure from a conventional magnetic trap is also proposed. The
flexible nature of this new ring trap, including an adjustable radius and
adjustable transverse oscillation frequencies, will allow the study of
superfluidity in variable geometries and dimensionalities.Comment: 4 figures, 10 pages ; the order of the sections has been changed ; to
appear in Phys. Rev.
Observation of atom pairs in spontaneous four wave mixing of two colliding Bose-Einstein Condensates
We study atom scattering from two colliding Bose-Einstein condensates using a
position sensitive, time resolved, single atom detector. In analogy to quantum
optics, the process can also be thought of as spontaneous, degenerate four wave
mixing of de Broglie waves. We find a clear correlation between atoms with
opposite momenta, demonstrating pair production in the scattering process. We
also observe a Hanbury Brown and Twiss correlation for collinear momenta, which
permits an independent measurement of the size of the pair production source
and thus the size of the spatial mode. The back to back pairs occupy very
nearly two oppositely directed spatial modes, a promising feature for future
quantum optics experiments.Comment: A few typos have been correcte
Hanbury Brown Twiss effect for ultracold quantum gases
We have studied 2-body correlations of atoms in an expanding cloud above and
below the Bose-Einstein condensation threshold. The observed correlation
function for a thermal cloud shows a bunching behavior, while the correlation
is flat for a coherent sample. These quantum correlations are the atomic
analogue of the Hanbury Brown Twiss effect. We observe the effect in three
dimensions and study its dependence on cloud size.Comment: Figure 1 availabl
Pair correlations of scattered atoms from two colliding Bose-Einstein Condensates: Perturbative Approach
We apply an analytical model for anisotropic, colliding Bose-Einstein
condensates in a spontaneous four wave mixing geometry to evaluate the second
order correlation function of the field of scattered atoms. Our approach uses
quantized scattering modes and the equivalent of a classical, undepleted pump
approximation. Results to lowest order in perturbation theory are compared with
a recent experiment and with other theoretical approaches.Comment: 9 pages, 3 figure
A project of a new detector for direct Dark Matter search: MACHe3
MACHe3 (MAtrix of Cells of superfluid He3) is a project of a new detector for
direct Dark Matter (DM) search. A cell of superfluid He3 has been developed and
the idea of using a large number of such cells in a high granularity detector
is proposed.This contribution presents, after a brief description of the
superfluid He3 cell, the simulation of the response of different matrix
configurations allowing to define an optimum design as a function of the number
of cells and the volume of each cell. The exclusion plot and the predicted
interaction cross-section for the neutralino as a photino are presented.Comment: 8 pages, 7 figures, Proceedings of Dark Matter 2000 (Marina Del Rey,
Los Angeles, USA, 02/23/2000-02/25/2000
- …