72 research outputs found

    Effetto dei suoli degradati sul comportamento vegeto-produttivo della vite

    Get PDF
    In Italian vineyards it is common to find more or less extended areas with chemico-physical or biological soil deficiencies and problems in plant vigor and grape production. A reduced agronomic functionality is caused by wrong soil managements and improper land preparation before vine plantations. A strong land transformation alters, in fact, the existing natural balance, causing loss of organic matter and nutrients, erosions, reduction of available water and metal accumulation. This phenomenon affects the growth of vines and the grape yields. The aim of this work is to evaluate the effect of degraded soils on the vineyards of two Tuscan vine-growing regions (Chianti Classico and Maremma Toscana). In two farms, we have identified respectively three degraded and three non-degraded areas in order to assess the fitness of the vines and the quality of the grapes. We found marked differences between degraded and non-degraded areas: as expected, the soil conditions have influenced the vigor of the plants, the production and the grapes had an unbalanced maturation

    A Study on the Efficiency of Sustainable Wine Grape Vineyard Management Strategies

    Get PDF
    Crop protection strategies based on cupric products and mainly adopted in organic viticulture produce a consistent environmental impact due to the persistence of copper in soils and its negative effects on edaphic biodiversity. In this work, trials were carried out during the crop years 2018–2020 in a vineyard with an organic management by a low-copper strategy and in a conventional IPM management with an IPM strategy with reduced use of fungicides. Phytosanitary treatments have been strictly planned according to forecasting models, and fungicides have been partially substituted with substances improving the resistance mechanisms of plants. Different strategies of green manure management, in order to improve the health of vines, were also adopted. Results suggest the efficacy of the “GreenGrapes” plant protection strategy in conditions of low downy mildew pressure. Furthermore, no declines in the production quality have been recorded; conversely, the synergic effect of the green manure and the tested biostimulant substances (“GreenGrapes” protocols) and the green manure management improved yield and grape quality, compared with conventional conduction (IPM and Organic) with a grass covering

    Soil functionality assessment in degraded plots of vineyards

    Get PDF
    Land transformation to adapt fields to mechanization in perennial crop farming is a common practice which includes land levelling, deep ploughing, stone-breakage and clearing, application of fertilizers and amendments. Manipulation of the natural soil profile along its entire depth can severely disturb the naturally existing chemical physical,biological and hydrological equilibrium (Costantini and Barbetti, 2008; Costantini et al., 2013). The most common effects of the land transformation are mixing of soil horizons and soil truncation, which result in reduction of soil depth and available water, organic matter depletion, enrichment of calcium carbonate content in the topsoil,imbalance of some element ratio, and decline in the activity and diversity of soil biological communities involved in nutrient cycles. A decline in the capacity of soil to accommodate the soil-dwelling organisms causes a strong impact on several ecosystem services, in particular, the growth of the vine, the quality and quantity of the grapes,the production costs and the risk of erosion. These negative effects of a pre-planting mismanagement can occur simultaneously and interact to decrease soil fertility and grapevine performance (Lanyon et al., 2004; Tagliavini and RombolĂ , 2001; MartĂ­nez-Casasnovas and Ramos, 2009).Since soil spatial variability is usually high, soil manipulations frequently result into reduced soil functionality and decline of soil ecosystem services in defined plots of the vineyards. Sometimes soil degradation in these areas is very high and compromises not only vine performance and crop yield, but also disease resistance of plants to diseases and their survival. The impact of improper soil manipulations in vineyards may be of particular concern, because vineyards are frequently located on marginal hillsides, which are sensitive to soil erosion and characterized by shallow soil depth (Ramos, 2006). This paper wants to show the assessment of soil functionality in degraded areas within two farms in Tuscany. This work reports the results of the first activities in Italian sites of the ReSolVe Core-organic+ project, aimed at restoring optimal Soil functionality in degraded areas within organic European vineyards

    Evaluation of an online Diabetes Needs Assessment Tool (DNAT) for health professionals: a randomised controlled trial

    Get PDF
    Background: Continuous medical education is traditionally reliant to a large extent on self-directed learning based on individuals' perceived learning priorities. Evidence suggests that this ability to self-assess is limited, and more so in the least competent. Therefore, it may be of benefit to utilise some form of external assessment for this purpose. Many diabetes educational programmes have been introduced, but few have been assessed for their benefit in a systematic manner. As diabetes is an increasingly prevalent disease, methods for the dissemination and understanding of clinical guidelines need to be explored for their effectiveness. This paper describes the study design of a randomised controlled trial to evaluate the effectiveness of using an interactive online Diabetes Needs Assessment Tool (DNAT), that builds a learning curriculum based on identified knowledge gaps, compared with conventional self-directed learning. The study assesses the effect of these interventions on health professionals' knowledge of diabetes management, evaluates the acceptability of this process of learning and self-reported changes in clinical practice as a result of this novel educational process. Methods: Following a baseline assessment, participants will be randomised to undergo a 4-month learning period where they will either be given access to the diabetes learning modules alone (control group) or a Diabetes Needs Assessment Tool (DNAT) plus the diabetes learning modules (intervention group). On completion of the DNAT, a personalised learning report will be created for each participant identifying needs alongside individualised recommendations of the most appropriate learning modules to meet those requirements. All participants will complete a Diabetes Knowledge Test before and immediately after the allocated learning and the primary outcome will be the state of knowledge at 4 months. Learners will also be surveyed immediately after the learning period to assess the acceptability of the learning formats and the perceived usefulness and usability of the materials. After a further month, all learners will receive a series of questions to evaluate self-reported changes in clinical practice as a result of this educational experience and asked to include specific examples of any changes in their diabetes care practice

    Evaluation of an online interactive Diabetes Needs Assessment Tool (DNAT) versus online self-directed learning: a randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Methods for the dissemination, understanding and implementation of clinical guidelines need to be examined for their effectiveness to help doctors integrate guidelines into practice. The objective of this randomised controlled trial was to evaluate the effectiveness of an interactive online Diabetes Needs Assessment Tool (DNAT) (which constructs an e-learning curriculum based on individually identified knowledge gaps), compared with self-directed e-learning of diabetes guidelines.</p> <p>Methods</p> <p>Health professionals were randomised to a 4-month learning period and either given access to diabetes learning modules alone (control group) or DNAT plus learning modules (intervention group). Participants completed knowledge tests before and after learning (primary outcome), and surveys to assess the acceptability of the learning and changes to clinical practice (secondary outcomes).</p> <p>Results</p> <p>Sixty four percent (677/1054) of participants completed both knowledge tests. The proportion of nurses (5.4%) was too small for meaningful analysis so they were excluded. For the 650 doctors completing both tests, mean (SD) knowledge scores increased from 47.4% (12.6) to 66.8% (11.5) [intervention group (n = 321, 64%)] and 47.3% (12.9) to 67.8% (10.8) [control group (n = 329, 66%)], (ANCOVA p = 0.186). Both groups were satisfied with the usability and usefulness of the learning materials. Seventy seven percent (218/284) of the intervention group reported combining the DNAT with the recommended reading materials was "<it>very useful"/"useful"</it>. The majority in both groups (184/287, 64.1% intervention group and 206/299, 68.9% control group) [95% CI for the difference (-2.8 to 12.4)] reported integrating the learning into their clinical practice.</p> <p>Conclusions</p> <p>Both groups experienced a similar and significant improvement in knowledge. The learning materials were acceptable and participants incorporated the acquired knowledge into practice.</p> <p>Trial registration</p> <p>ISRCTN: <a href="http://www.controlled-trials.com/ISRCTN67215088">ISRCTN67215088</a></p

    Implementing a guideline for the treatment of type 2 diabetics: results of a Cluster- Randomized Controlled Trial (C-RCT)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Italy many diabetics still lack adequate care in general practice. We assessed the effectiveness of different strategies for the implementation of an evidence-based guideline for the management of non-complicated type 2 diabetes among General Practitioners (GPs) of Lazio region.</p> <p>Methods</p> <p>Three-arm cluster-randomised controlled trial with GPs as units of randomisation (clusters). 252 GPs were randomised either to an active strategy (training module with administration of the guideline), or to a passive dissemination (administration of the guideline only), or to usual care (control). Data on prescriptions of tests and drugs were collected by existing information systems, whereas patients' data came from GPs' databases. Process outcomes were measured at the cluster level one year after the intervention. Primary outcomes concerned the measurement of glycosilated haemoglobin and the commissioning of micro- and macrovascular complications assessment tests. In order to assess the physicians' drug prescribing behaviour secondary outcomes were also calculated.</p> <p>Results</p> <p>GPs identified 6395 uncomplicated type 2 patients with a high prevalence of cardiovascular risk factors. Data on GPs baseline performance show low proportions of glycosilated haemoglobin assessments. Results of the C-RCT analysis indicate that the active implementation strategy was ineffective relating to all primary outcomes (respectively, OR 1.06 [95% IC: 0.76–1.46]; OR 1.07 [95% IC: 0.80–1.43]; OR 1.4 [95% IC:0.91–2.16]. Similarly, passive dissemination of the guideline showed no effect.</p> <p>Conclusion</p> <p>In our region compliance of GPs with guidelines was not enhanced by a structured learning programme. Implementation through organizational measures appears to be essential to induce behavioural changes.</p> <p>Trial registration</p> <p>ISRCTN80116232</p

    Assessment and restoring soil functionality in degraded areas of organic vineyards. The preliminary results of the ReSolVe project in Italy

    Get PDF
    In both conventional and organic Italian vineyards, it is quite common to have areas characterized by problems in vine health, grape production and quality, often caused by improper land preparation before vine plantation and/or management. Causes for soil malfunctioning can include: reduced contribution of the soil fauna to the ecosystem services (i.e. nutrient cycles), poor organic matter content, imbalance of some element ratio, altered pH, water deficiency, soil compaction and/or scarce oxygenation. ReSolVe is a transnational and interdisciplinary 3-years research project aimed at testing the effects of selected organic strategies for restoring optimal soil functionality in degraded areas within vineyard. The different restoring strategies implemented in each plot will be: i) compost produced on farm by manure + pruning residue + grass, ii) faba bean and barley green manure, iii) sowing and dry mulching with Trifolium squarrosum L. During two years of such treatments, the trend of the soil features and the grapevine status will be monitored in detail, to reveal the positive and negative effects of such treatments. The project involves 8 research groups in 6 different EU countries (Italy, France, Spain, Sweden, Slovenia, and Turkey), with experts from several disciplines, including soil science, ecology, microbiology, grapevine physiology, viticulture, and biometry. The experimental vineyards are situated in Italy (Chianti hills and Maremma plain, Tuscany), France (Bordeaux and Languedoc), Spain (La Rioja) and Slovenia (Primorska) for winegrape, and in Turkey (Adana and Mersin) for table grape. Soil features before implementing restoring strategies showed lower content of soil organic matter and enzyme activities, and higher carbonates in degraded areas than in the non-degraded areas. The Biological Soil Quality values of microarthropods were always high, in comparison with data registered in similarly managed vineyards or stable ecosystems, and the data showed homogeneous patterns within the experimental plots. Nematode abundance, taxa richness and maturity (MI) and plant parasitic (PPI) indices were higher in nondegraded than degraded areas, but differences were not significant. Grapevines in degraded areas of both farms showed less vegetative vigour and significantly lower values in the SPAD colour index. The yield and the weight of the grape bunches and berries were greater in the not degraded. The grapes of degraded areas at harvest had instead a sugar content significantly higher (on average +2.5�Brix). The restoration techniques and the monitoring methodologies developed and tested during the ReSolVe project will be described in specific final guidelines. The restoration techniques will be accessible for all the European farmers and will be low cost and environmental-friendly. A protocol of analyses and measurements between the all partners will allow an effective and comparable monitoring of vineyard ecosystemic functioning in European countries

    Effects of reduced soil functionality in European vineyards

    Get PDF
    Improper or excessive land preparation methods in vineyards before planting can have a considerable impact on soil functionality. They include excessive levelling and deep ploughing leading to disturbances of the natural contour of slopes and destruction, truncation and burial of soil horizons. Manipulations may significantly modify chemical, physical, biological and hydrological balance of soils. Problems that may arise from these interventions relate to the reduction of organic substances, enrichment of calcium carbonate and soluble salts, impacting development and health of grapevines. Reduced water retention capacity can lead to increased water stress during dry season, decreased water permeability and circulation of oxygen in the soil, increased runoff volume, surface erosion and landslide risk, reduced biodiversity and limitation of biochemical processes (organic matter mineralization, bioavailability of nutrients, etc.). Soil degradations can lead to the loss of soil functionality even after the planting as a result of accelerated erosion, compaction by agricultural vehicles, excessive loss of organic matter and nutrients, and the accumulation of heavy metals such as copper. In both conventional and organic vineyards, it is quite common to have areas with reduced soil functionality that have negative impact on vine health and grape production and quality. In the framework of the Core organic RESOLVE project, a study was conducted in organic vineyards showing areas with reduced and good soil functionality. Degraded soils resulted in significantly lower amounts of grapes. The chlorophyll index (SPAD) of the grapevine during veraison was significantly lower in areas of degraded soils compared with the situation in areas of the same vineyard with non-degraded soils. In general, causes of soil malfunctioning were related to a lower fertility, including reduced organic carbon, total nitrogen and cation exchange capacity, higher concentrations of carbonates, and increased stoniness in the topsoil. Degraded soils showed lower structure quality and rooting depth limited by shallow saprolite or horizon features such as compaction, scarce fertility and high content of carbonates. The soils in the non-degraded areas showed significant higher content of total nitrogen and higher carbon/nitrogen ratios, thus a better stability of organic matter. On the other hand, biological diversity and activity, monitored by different proxies (microarthropods, nematodes, enzymes, organic matter turnover by Tea bag index) in some vineyards, all managed organically, did not show any clear and significant differences between degraded and not degraded areas. Similarly, no clear difference in overall microbial diversity indices (Shannon, Simpson) and diversity evenness (Pielou) were observed between non-degraded and degraded areas. All indices were relatively high and indicative for rich occurrence of abundant and rare microbial species, high diversity and low abundance of individual species and high species evenness
    • …
    corecore