13 research outputs found

    Precision restoration: a necessary approach to foster forest recovery in the 21st century

    Get PDF
    We thank S. Tabik, E. Guirado, and Garnata Drone SL for fruitful debates about the application of remote sensing and artificial intelligence in restoration. E. McKeown looked over the English version of the manuscript. Original drawings were made by J. D. Guerrero. This work was supported by projects RESISTE (P18-RT-1927) from the Consejeria de Economia, Conocimiento, y Universidad from the Junta de Andalucia, and AVA201601.19 (NUTERA-DE I), DETECTOR (A-RNM-256-UGR18), and AVA2019.004 (NUTERA-DE II), cofinanced (80%) by the FEDER Program. F.M.-R. acknowledges the support of the Agreement 4580 between OTRI-UGR and the city council of La Zubia. We thank an anonymous reviewer for helpful comments that improved the manuscript.Forest restoration is currently a primary objective in environmental management policies at a global scale, to the extent that impressive initiatives and commitments have been launched to plant billions of trees. However, resources are limited and the success of any restoration effort should be maximized. Thus, restoration programs should seek to guarantee that what is planted today will become an adult tree in the future, a simple fact that, however, usually receives little attention. Here, we advocate for the need to focus restoration efforts on an individual plant level to increase establishment success while reducing negative side effects by using an approach that we term “precision forest restoration” (PFR). The objective of PFR will be to ensure that planted seedlings or sowed seeds will become adult trees with the appropriate landscape configuration to create functional and self-regulating forest ecosystems while reducing the negative impacts of traditional massive reforestation actions. PFR can take advantage of ecological knowledge together with technologies and methodologies from the landscape scale to the individual- plant scale, and from the more traditional, low-tech approaches to the latest high-tech ones. PFR may be more expensive at the level of individual plants, but will be more cost-effective in the long term if it allows for the creation of resilient forests able to providemultiple ecosystemservices. PFR was not feasible a few years ago due to the high cost and low precision of the available technologies, but it is currently an alternative that might reformulate a wide spectrum of ecosystem restoration activities.Junta de Andalucia P18-RT-1927European Commission AVA201601.19 A-RNM-256-UGR18 AVA2019.004OTRI-UGR 4580city council of La Zubia 458

    Association of Inhibitory Killer Cell Immunoglobulin-like Receptor Ligands With Higher Plasmodium falciparum Parasite Prevalence.

    No full text
    Killer cell immunoglobulin-like receptors (KIRs) and their HLA ligands influence the outcome of many infectious diseases. We analyzed the relationship of compound KIR-HLA genotypes with risk of Plasmodium falciparum infection in a longitudinal cohort of 890 Ugandan individuals. We found that presence of HLA-C2 and HLA-Bw4, ligands for inhibitory KIR2DL1 and KIR3DL1, respectively, increased the likelihood of P. falciparum parasitemia in an additive manner. Individuals homozygous for HLA-C2, which mediates strong inhibition via KIR2DL1, had the highest odds of parasitemia, HLA-C1/C2 heterozygotes had intermediate odds, and individuals homozygous for HLA-C1, which mediates weaker inhibition through KIR2DL2/3, had the lowest odds of parasitemia. In addition, higher surface expression of HLA-C, the ligand for inhibitory KIR2DL1/2/3, was associated with a higher likelihood of parasitemia. Together these data indicate that stronger KIR-mediated inhibition confers a higher risk of P. falciparum parasitemia and suggest that KIR-expressing effector cells play a role in mediating antiparasite immunity

    In Utero Activation of Natural Killer Cells in Congenital Cytomegalovirus Infection.

    No full text
    BackgroundCongenital cytomegalovirus (CMV) infection is the most common infectious cause of birth defects and neurological damage in newborns. Despite a well-established role for natural killer (NK) cells in control of CMV infection in older children and adults, it remains unknown whether fetal NK cells can sense and respond to CMV infection acquired in utero.MethodsHere, we investigate the impact of congenital CMV infection on the neonatal NK-cell repertoire by assessing the frequency, phenotype, and functional profile of NK cells in cord blood samples from newborns with congenital CMV and from uninfected controls enrolled in a birth cohort of Ugandan mothers and infants.ResultsWe find that neonatal NK cells from congenitally CMV infected newborns show increased expression of cytotoxic mediators, signs of maturation and activation, and an expansion of mature CD56- NK cells, an NK-cell subset associated with chronic viral infections in adults. Activation was particularly prominent in NK cell subsets expressing the Fcγ receptor CD16, indicating a role for antibody-mediated immunity against CMV in utero.ConclusionsThese findings demonstrate that NK cells can be activated in utero and suggest that NK cells may be an important component of the fetal and infant immune response against CMV.Clinical trials registrationNCT02793622

    Opsonized antigen activates Vδ2+ T cells via CD16/FCγRIIIa in individuals with chronic malaria exposure.

    No full text
    Vγ9Vδ2 T cells rapidly respond to phosphoantigens produced by Plasmodium falciparum in an innate-like manner, without prior antigen exposure or processing. Vδ2 T cells have been shown to inhibit parasite replication in vitro and are associated with protection from P. falciparum parasitemia in vivo. Although a marked expansion of Vδ2 T cells is seen after acute malaria infection in naïve individuals, repeated malaria causes Vδ2 T cells to decline both in frequency and in malaria-responsiveness, and to exhibit numerous transcriptional and phenotypic changes, including upregulation of the Fc receptor CD16. Here we investigate the functional role of CD16 on Vδ2 T cells in the immune response to malaria. We show that CD16+ Vδ2 T cells possess more cytolytic potential than their CD16- counterparts, and bear many of the hallmarks of mature NK cells, including KIR expression. Furthermore, we demonstrate that Vδ2 T cells from heavily malaria-exposed individuals are able to respond to opsonized P.falciparum-infected red blood cells through CD16, representing a second, distinct pathway by which Vδ2 T cells may contribute to anti-parasite effector functions. This response was independent of TCR engagement, as demonstrated by blockade of the phosphoantigen presenting molecule Butyrophilin 3A1. Together these results indicate that Vδ2 T cells in heavily malaria-exposed individuals retain the capacity for antimalarial effector function, and demonstrate their activation by opsonized parasite antigen. This represents a new role both for Vδ2 T cells and for opsonizing antibodies in parasite clearance, emphasizing cooperation between the cellular and humoral arms of the immune system
    corecore