23 research outputs found

    A randomised trial of an internet weight control resource: The UK Weight Control Trial [ISRCTN58621669]

    Get PDF
    BACKGROUND: Obesity treatment is notoriously unsuccessful and one of the barriers to successful weight loss reported by patients is a lack of social support. The Internet offers a novel and fast approach to the delivery of health information, enabling 24-hour access to help and advice. However, much of the health information available on the Internet is unregulated or not written by qualified health professionals to provide unbiased information. The proposed study aims to compare a web-based weight loss package with traditional dietary treatment of obesity in participants. The project aims to deliver high quality information to the patient and to evaluate the effectiveness of this information, both in terms of weight loss outcomes and cost-effectiveness. METHODS: This study is a randomised controlled trial of a weight loss package against usual care provided within General Practice (GP) surgeries in Leeds, UK. Participants will be recruited via posters placed in participating practices. A target recruitment figure of 220 will enable 180 people to be recruited (allowing for 22% dropout). Participants agreeing to take part in the study will be randomly allocated using minimisation to either the intervention group, receiving access to the Internet site, or the usual care group. The primary outcome of the study will be the ability of the package to promote change in BMI over 6 and 12 months compared with traditional treatment. Secondary outcomes will be the ability of the Internet package to promote change in reported lifestyle behaviours. Data will be collected on participant preferences, adherence to treatment, health care use and time off work. Difference in cost between groups in provision of the intervention and the cost of the primary outcome will also be estimated. CONCLUSION: A positive result from this study would enhance the repertoire of treatment approaches available for the management of obesity. A negative result would be used to inform the research agenda and contribute to redefining future strategies for tackling obesity

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    The protective mechanisms of protein disulphide isomerase in amyotrophic lateral sclerosis

    No full text
    Empirical thesis.Bibliography: pages 566-598.Chapter 1. General introductionn -- Chapter 2. Material and methods -- Chapter 3. PDI is protective against ALS-associated mutant cyclin F expressed in neuronal cells -- Chapter 4. Characterising the protective properties of PDI against misfolded proteins in ALS -- Chapter 5. The role of redox activity in the protective function of PDI -- Chapter 6. The role of PDI and its redox activity in FUS-linked ALS -- Chapter 7. Peptides based on PDI's active site are protective in neuronal cells expressing mutant SOD1 -- Chapter 8. General discussion -- References -- Appendices.Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disorder characterised by the degeneration of motor neurons. Numerous genes are linked to ALS both genetically and pathologically. Approximately 10% of ALS cases are familial, and of these cases, approximately 20% are due to mutations in the gene encoding superoxide dismutase 1 (SOD1), and approximately 10% are due to mutations in TAR DNA binding protein 43 (TDP-43) and fused in sarcoma (FUS). A major hallmark observed in ALS is the accumulation of misfolded proteins, containing either SOD1, TDP-43 and FUS, which form aggregates in the cytoplasm of degenerating motor neurons. However, the pathogenic mechanisms of disease in ALS remain poorly understood. Recent evidence suggests that dysfunction to the Endoplasmic Reticulum (ER), resulting in ER stress, is increasingly implicated in ALS pathogenesis. Protein Disulphide Isomerase (PDI) is an ER chaperone which functions as an oxidoreductase, utilising its disulphide interchange activity to oxidise, reduce and isomerase disulphide bonds. Our laboratory has previously demonstrated that PDI overexpression is protective against mutant SOD1, TDP-43 and FUS in neuronal cell cultures. Hence, here we examined that PDI overexpression is also protective against ALS mechanisms of pathogenesis triggered by mutant forms of novel ALS protein, Cyclin F. Previous studies have also identified that PDI's disulphide interchange activity is fundamental for its protective activity. Therefore, here we further investigated the properties of PDI which are important in mediating this activity. Results obtained suggest that PDI's a domain is essential for PDI's protective function, as well as its oxidase activity (capability to form disulphide bonds). These properties were verified in cell culture models expressing mutant FUS. Ultimately, there is a need for more effective therapeutics in ALS, thus, peptides mimicking PDI's a domain and oxidase activity were developed and analysed here for their protective effect in ALS cell models.Mode of access: World wide web1 online resource (xxii, 607 pages) colour illustration

    Protein disulphide isomerases : emerging roles of PDI and ERp57 in the nervous system and as therapeutic targets for ALS

    No full text
    Introduction: There is increasing evidence that endoplasmic reticulum (ER) chaperones Protein Disulphide Isomerase (PDI) and ERp57 (endoplasmic reticulum protein 57) are protective against neurodegenerative diseases related to protein misfolding, including Amyotrophic Lateral Sclerosis (ALS). PDI and ERp57 also possess disulphide interchange activity, in which protein disulphide bonds are oxidized, reduced and isomerized, to form their native conformation. Recently, missense and intronic variants of PDI and ERp57 were associated with ALS, implying that PDI proteins are relevant to ALS pathology. Areas covered: Here, we discuss possible implications of the PDI and ERp57 variants, as well as recent studies describing previously unrecognized roles for PDI and ERp57 in the nervous system. Therapeutics based on PDI may therefore be attractive candidates for ALS. However, in addition to its protective functions, aberrant, toxic roles for PDI have recently been described. These functions need to be fully characterized before effective therapeutic strategies can be designed. Expert opinion: These disease-associated variants of PDI and ERp57 provide additional evidence for an important role for PDI proteins in ALS. However, there are many questions remaining unanswered that need to be addressed before the potential of the PDI family in relation to ALS can be fully realized.13 page(s

    The cysteine (Cys) residues Cys-6 and Cys-111 in mutant superoxide dismutase 1 (SOD1) A4V are required for induction of endoplasmic reticulum stress in amyotrophic lateral sclerosis

    No full text
    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the degeneration of motor neurons. Between 12 and 20% of inherited cases and approximately 1–2% of all cases are caused by mutations in the gene encoding dismutase 1 (SOD1). Mutant SOD1 A4V (alanine to valine) induces endoplasmic reticulum (ER) stress, which is increasingly implicated as a pathway to motor neuron degeneration and death in ALS. However, it remains unclear how ER stress is induced by mutant SOD1 A4V. Previous studies have established that it is induced early in pathophysiology and it precedes the formation of mutant SOD1 inclusions. SOD1 contains four cysteine residues, two of which form an intra-subunit disulphide bond involving Cys-57 and Cys-146. The remaining two cysteines, Cys-6 and Cys-111, remain unpaired and have been implicated in mutant SOD1 aggregation. In this study, we examined the relationship between the SOD1 A4V cysteine residues and aggregation, ER stress induction and toxicity. We report here that mutation of Cys-6 and Cys-111 in mutant SOD1 A4V, but not Cys-57 or Cys-146, ameliorates ER stress, inclusion formation and apoptosis in neuronal cell lines. These results imply that protein misfolding, induced by Cys-6 and Cys-111, is required for these pathological events in neuronal cells

    Protein quality control and the amyotrophic lateral sclerosis/frontotemporal dementia continuum

    No full text
    Protein homeostasis, or proteostasis, has an important regulatory role in cellular function. Protein quality control mechanisms, including protein folding and protein degradation processes, have a crucial function in post-mitotic neurons. Cellular protein quality control relies on multiple strategies, including molecular chaperones, autophagy, the ubiquitin proteasome system, endoplasmic reticulum (ER)-associated degradation (ERAD) and the formation of stress granules (SGs), to regulate proteostasis. Neurodegenerative diseases are characterized by the presence of misfolded protein aggregates, implying that protein quality control mechanisms are dysfunctional in these conditions. Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases that are now recognized to overlap clinically and pathologically, forming a continuous disease spectrum. In this review article, we detail the evidence for dysregulation of protein quality control mechanisms across the whole ALS-FTD continuum, by discussing the major proteins implicated in ALS and/or FTD. We also discuss possible ways in which protein quality mechanisms could be targeted therapeutically in these disorders and highlight promising protein quality control-based therapeutics for clinical trials

    Opsonized antigen activates Vδ2+ T cells via CD16/FCγRIIIa in individuals with chronic malaria exposure.

    No full text
    Vγ9Vδ2 T cells rapidly respond to phosphoantigens produced by Plasmodium falciparum in an innate-like manner, without prior antigen exposure or processing. Vδ2 T cells have been shown to inhibit parasite replication in vitro and are associated with protection from P. falciparum parasitemia in vivo. Although a marked expansion of Vδ2 T cells is seen after acute malaria infection in naïve individuals, repeated malaria causes Vδ2 T cells to decline both in frequency and in malaria-responsiveness, and to exhibit numerous transcriptional and phenotypic changes, including upregulation of the Fc receptor CD16. Here we investigate the functional role of CD16 on Vδ2 T cells in the immune response to malaria. We show that CD16+ Vδ2 T cells possess more cytolytic potential than their CD16- counterparts, and bear many of the hallmarks of mature NK cells, including KIR expression. Furthermore, we demonstrate that Vδ2 T cells from heavily malaria-exposed individuals are able to respond to opsonized P.falciparum-infected red blood cells through CD16, representing a second, distinct pathway by which Vδ2 T cells may contribute to anti-parasite effector functions. This response was independent of TCR engagement, as demonstrated by blockade of the phosphoantigen presenting molecule Butyrophilin 3A1. Together these results indicate that Vδ2 T cells in heavily malaria-exposed individuals retain the capacity for antimalarial effector function, and demonstrate their activation by opsonized parasite antigen. This represents a new role both for Vδ2 T cells and for opsonizing antibodies in parasite clearance, emphasizing cooperation between the cellular and humoral arms of the immune system

    Impaired NHEJ repair in amyotrophic lateral sclerosis is associated with TDP-43 mutations

    No full text
    BACKGROUND: Pathological forms of TAR DNA-binding protein 43 (TDP-43) are present in motor neurons of almost all amyotrophic lateral sclerosis (ALS) patients, and mutations in TDP-43 are also present in ALS. Loss and gain of TDP-43 functions are implicated in pathogenesis, but the mechanisms are unclear. While the RNA functions of TDP-43 have been widely investigated, its DNA binding roles remain unclear. However, recent studies have implicated a role for TDP-43 in the DNA damage response. METHODS: We used NSC-34 motor neuron-like cells and primary cortical neurons expressing wildtype TDP-43 or TDP-43 ALS associated mutants (A315T, Q331K), in which DNA damage was induced by etoposide or H2O2 treatment. We investigated the consequences of depletion of TDP-43 on DNA repair using small interfering RNAs. Specific non homologous end joining (NHEJ) reporters (EJ5GFP and EJ2GFP) and cells lacking DNA-dependent serine/threonine protein kinase (DNA-PK) were used to investigate the role of TDP-43 in DNA repair. To investigate the recruitment of TDP-43 to sites of DNA damage we used single molecule super-resolution microscopy and a co-immunoprecipitation assay. We also investigated DNA damage in an ALS transgenic mouse model, in which TDP-43 accumulates pathologically in the cytoplasm. We also examined fibroblasts derived from ALS patients bearing the TDP-43 M337V mutation for evidence of DNA damage. RESULTS: We demonstrate that wildtype TDP-43 is recruited to sites of DNA damage where it participates in classical NHEJ DNA repair. However, ALS-associated TDP-43 mutants lose this activity, which induces DNA damage. Furthermore, DNA damage is present in mice displaying TDP-43 pathology, implying an active role in neurodegeneration. Additionally, DNA damage triggers features typical of TDP-43 pathology; cytoplasmic mis-localisation and stress granule formation. Similarly, inhibition of NHEJ induces TDP-43 mis-localisation to the cytoplasm. CONCLUSIONS: This study reveals that TDP-43 functions in DNA repair, but loss of this function triggers DNA damage and is associated with key pathological features of ALS
    corecore