111 research outputs found

    Interaction potentials for soft and hard ellipsoids

    Full text link
    Using results from colloid science we derive interaction potentials for computer simulations of mixtures of soft or hard ellipsoids of arbitrary shape and size. Our results are in many respects reminicent of potentials of the Gay-Berne type but have a well-defined microscopic interpretation and no adjustable parameters. Since our potentials require the calculation of similar variables, the modification of existing simulation codes for Gay-Berne potentials is straightforward. The computational performance should remain unaffected.Comment: 8 pages, 4 figure

    Comparison of Plume Dynamics for Laser Ablated Metals: Al and Ti

    Get PDF
    Emissive plumes from pulsed laser ablation of bulk Ti and Al from KrF laser irradiation at laser fluence up to 3.5 J/cm2 and argon background pressures of 0–1 Torr have been observed using gated intensified charged-coupled device imagery. Mass loss for Ti increases from 0.1 to 0.8 μg/pulse as pulse energy increase from 174 to 282 mJ/pulse (35–170 photons/atom) and decreases by ∼30% as pressure increases from vacuum to 1 Torr. Early plume energies are described by the free expansion velocities of 1.57 ± 0.02 and of 1.81 ± 0.07 cm/μs for Ti and Al, respectively, and up to 90% of the incoming laser energy can be attributed to the Al shock front in the mid-field. The ablation thresholds of 90 ± 27 mJ (1.12 ± 0.34 J/cm2) for Ti and 126 ± 13 mJ (1.58 ± 0.16 J/cm2) for Al also represent 30%–70% of the incident laser energy. The decrease in mass loss at higher pressures is attributed to plasma shielding of the target surface

    Pressure Broadening and Shift of the Cesium D\u3csub\u3e1\u3c/sub\u3e Transition by the Noble Gases and N\u3csub\u3e2\u3c/sub\u3e, H\u3csub\u3e2\u3c/sub\u3e, HD, D\u3csub\u3e2\u3c/sub\u3e, CH\u3csub\u3e4\u3c/sub\u3e, C\u3csub\u3e2\u3c/sub\u3eH\u3csub\u3e6\u3c/sub\u3e, CF\u3csub\u3e4\u3c/sub\u3e, and \u3csup\u3e3\u3c/sup\u3eHe

    Get PDF
    The pressure broadening and shift rates for the cesium D1 (62P1/2 ← 6 2S1/2) transition with the noble gases and N2, H2, HD, D2, CH4, C2H6, CF4, and 3He were obtained for pressures less than 300 torr at temperatures under 65 °C by means of laser absorption spectroscopy. The collisional broadening rate, γL, for He, Ne, Ar, Kr, Xe, N2, H2, HD, D2, CH4, C2H6, CF4, and 3He are 24.13, 10.85, 18.31, 17.82, 19.74, 16.64, 20.81, 20.06, 18.04, 29.00, 26.70, 18.84, and 26.00 MHz/torr, respectively. The corresponding pressure-induced shift rates, δ, are 4.24, −1.60, −6.47, −5.46, −6.43, −7.76, 1.11, 0.47, 0.00, −9.28, −8.54, −6.06, and 6.01 MHz/torr. These rates have then been utilized to calculate Lennard-Jones potential coefficients to quantify the interatomic potential surfaces. The broadening cross section has also been shown to correlate with the polarizability of the collision partner

    Spectral broadening Effects on Pulsed-source Digital Holography

    Get PDF
    Using a pulsed configuration, a digital-holographic system is setup in the off-axis image plane recording geometry, and spectral broadening via pseudo-random bit sequence is used to degrade the temporal coherence of the master-oscillator laser. The associated effects on the signal-to-noise ratio are then measured in terms of the ambiguity and coherence efficiencies. It is found that the ambiguity efficiency, which is a function of signal-reference pulse overlap, is not affected by the effects of spectral broadening. The coherence efficiency, on the other hand, is affected. As a result, the coherence efficiency, which is a function of effective fringe visibility, is shown to be a valid performance metric for pulsed-source digital holography

    Fast Fourier Transform Simulation Techniques for Coulomb Gases

    Full text link
    An improved approach to updating the electric field in simulations of Coulomb gases using the local lattice technique introduced by Maggs and Rossetto, is described and tested. Using the Fast Fourier Transform (FFT) an independent configuration of electric fields subject to Gauss' law constraint can be generated in a single update step. This FFT based method is shown to outperform previous approaches to updating the electric field in the simulation of a basic test problem in electrostatics of strongly correlated systems.Comment: 5 pages, 3 figure

    Digital Holography Experiments with Degraded Temporal Coherence

    Get PDF
    To simulate the effects of multiple-longitudinal modes and rapid fluctuations in center frequency, we use sinusoidal phase modulation and linewidth broadening, respectively. These effects allow us to degrade the temporal coherence of our master-oscillator laser, which we then use to conduct digital holography experiments. In turn, our results show that the coherence efficiency decreases quadratically with fringe visibility and that our measurements agree with our models to within 1.8% for sinusoidal phase modulation and 6.9% for linewidth broadening

    Plasma Spectroscopy of Titanium Monoxide for Characterization of Laser Ablation

    Get PDF
    Ablation of titanium wafers in air is accomplished with 60 µs pulsed, 2.94 µm laser radiation. Titanium monoxide spectra are measured in the wavelength range of 500 nm to 750 nm, and molecular signatures include bands of the C3 Δ → X3 Δ α, B3 Π → X3 Δ γ\u27, and A3 Φ → X3 Δ γ transitions. The spatially and temporally averaged spectra appear to be in qualitative agreement with previous temporally resolved studies that employed shorter wavelengths and shorter pulse durations than utilized in this work. The background signals in the current study are possibly due to particulate content in the plume. A chemical kinetic model of the plume is being developed that will be coupled to a diatomic emission model in order to extract a molecular temperature from the observed spectra

    Novel Quenched Disorder Fixed Point in a Two-Temperature Lattice Gas

    Full text link
    We investigate the effects of quenched randomness on the universal properties of a two-temperature lattice gas. The disorder modifies the dynamical transition rates of the system in an anisotropic fashion, giving rise to a new fixed point. We determine the associated scaling form of the structure factor, quoting critical exponents to two-loop order in an expansion around the upper critical dimension dc=7_c=7. The close relationship with another quenched disorder fixed point, discovered recently in this model, is discussed.Comment: 11 pages, no figures, RevTe

    Local Simulation Algorithms for Coulomb Interaction

    Full text link
    Long ranged electrostatic interactions are time consuming to calculate in molecular dynamics and Monte-Carlo simulations. We introduce an algorithmic framework for simulating charged particles which modifies the dynamics so as to allow equilibration using a local Hamiltonian. The method introduces an auxiliary field with constrained dynamics so that the equilibrium distribution is determined by the Coulomb interaction. We demonstrate the efficiency of the method by simulating a simple, charged lattice gas.Comment: Last figure changed to improve demonstration of numerical efficienc

    Frozen Disorder in a Driven System

    Full text link
    We investigate the effects of quenched disorder on the universal properties of a randomly driven Ising lattice gas. The Hamiltonian fixed point of the pure system becomes unstable in the presence of a quenched local bias, giving rise to a new fixed point which controls a novel universality class. We determine the associated scaling forms of correlation and response functions, quoting critical exponents to two-loop order in an expansion around the upper critical dimension dc=5_c=5.Comment: 5 pages RevTex. Uses multicol.sty. Accepted for publication in PR
    corecore