11 research outputs found

    Numerical simulation of the plunge stage in friction stir welding alloys EN AW 2024 T 351 and EN AW 7049A T 652

    Get PDF
    Tema ovog rada je proučavanje faze probijanja korišćenjem numeričkog modela. Analizirana je promena temperature i sile probijanja u toku faze probijanja postupka zavarivanja trenjem mešanjem za legure aluminijuma visoke čvrstoće EN AW 2024 T 351 i EN AW 7049A T 652, pri različitim brzinama rotacije alata. Numerički rezultati pokazuju da maksimalne temperature u postupku zavarivanja trenjem mešanjem mogu biti povećane sa povećanjem brzine rotacije alata i da su temperature manje od temperature topljenja materijala koji se zavaruje. Pri istim brzinama rotacije alata, registrovana je veća temperatura kod legure aluminijuma EN AW 2024 T 351 i veća sila probijanja - otpor materijala kod legure EN AW 7049A T 652. Sa povećanjem brzine rotacije alata, sila probijanja može biti smanjena. Trodimenzionalni model konačnih elemenata faze probijanja je razvijen korišćenjem ABAQUS programskog paketa za proučavanje termomehaničkih procesa faze probijanja. Spregnuti termo-mehanički model konačnih elemenata koristi proizvoljnu Lagranž-Ojlerovu formulaciju, Džonson-Kukov zakon i Kulonov zakon trenja. U ovoj analizi se temperatura, pomjeranje i mehaničke reakcije posmatraju istovremeno. Generisanje toplote u postupku zavarivanja trenjem mešanjem se može podeliti na tri dela:generisanje toplote trenjem od čela alata, generisanje toplote trenjem od trna alata i generisanje toplote od plastičnih deformacija u blizini trna alata.This paper investigates the plunge stage using numerical modeling. Change of temperature and plunge force have been analyzed during the plunge stage of the FSW procedure for high hardness aluminum alloys EN AW 2024 T 351 and EN AW 7049A T 652, at different speed of tool rotation. Numerical results indicate that the maximum temperature in the FSW process can be increased with the increase of the rotational speed and that temperature is lower than the melting point of the welding material. Higher temperature was registered at the aluminum alloy EN AW 2024 T 351 at the same speed of tool rotation, and higher plunge force - resistance of material was registered at the alloy EN AW 7049A T 652. When the rotational speed is increased, the plunge force can be reduced. A three-dimensional finite element model (FEM) of the plunge stage was developed using the commercial code ABAQUS to study the thermo-mechanical processes involved during the plunge stage. A coupled thermo-mechanical 3D FE model using the arbitrary Lagrangian-Eulerian formulation, the Johnson-Cook material law and the Coulomb's Law of friction. In this analysis, temperature, displacement and mechanical responses are determined simultaneously. The heat generation in FSW can be divided into three parts: frictional heat generated by the tool shoulder, frictional heat generated by the tool pin, and heat generated by material plastic deformation near the pin region

    Numerical simulation of the plunge stage in friction stir welding alloys EN AW 2024 T 351 and EN AW 7049A T 652

    Get PDF
    Tema ovog rada je proučavanje faze probijanja korišćenjem numeričkog modela. Analizirana je promena temperature i sile probijanja u toku faze probijanja postupka zavarivanja trenjem mešanjem za legure aluminijuma visoke čvrstoće EN AW 2024 T 351 i EN AW 7049A T 652, pri različitim brzinama rotacije alata. Numerički rezultati pokazuju da maksimalne temperature u postupku zavarivanja trenjem mešanjem mogu biti povećane sa povećanjem brzine rotacije alata i da su temperature manje od temperature topljenja materijala koji se zavaruje. Pri istim brzinama rotacije alata, registrovana je veća temperatura kod legure aluminijuma EN AW 2024 T 351 i veća sila probijanja - otpor materijala kod legure EN AW 7049A T 652. Sa povećanjem brzine rotacije alata, sila probijanja može biti smanjena. Trodimenzionalni model konačnih elemenata faze probijanja je razvijen korišćenjem ABAQUS programskog paketa za proučavanje termomehaničkih procesa faze probijanja. Spregnuti termo-mehanički model konačnih elemenata koristi proizvoljnu Lagranž-Ojlerovu formulaciju, Džonson-Kukov zakon i Kulonov zakon trenja. U ovoj analizi se temperatura, pomjeranje i mehaničke reakcije posmatraju istovremeno. Generisanje toplote u postupku zavarivanja trenjem mešanjem se može podeliti na tri dela:generisanje toplote trenjem od čela alata, generisanje toplote trenjem od trna alata i generisanje toplote od plastičnih deformacija u blizini trna alata.This paper investigates the plunge stage using numerical modeling. Change of temperature and plunge force have been analyzed during the plunge stage of the FSW procedure for high hardness aluminum alloys EN AW 2024 T 351 and EN AW 7049A T 652, at different speed of tool rotation. Numerical results indicate that the maximum temperature in the FSW process can be increased with the increase of the rotational speed and that temperature is lower than the melting point of the welding material. Higher temperature was registered at the aluminum alloy EN AW 2024 T 351 at the same speed of tool rotation, and higher plunge force - resistance of material was registered at the alloy EN AW 7049A T 652. When the rotational speed is increased, the plunge force can be reduced. A three-dimensional finite element model (FEM) of the plunge stage was developed using the commercial code ABAQUS to study the thermo-mechanical processes involved during the plunge stage. A coupled thermo-mechanical 3D FE model using the arbitrary Lagrangian-Eulerian formulation, the Johnson-Cook material law and the Coulomb's Law of friction. In this analysis, temperature, displacement and mechanical responses are determined simultaneously. The heat generation in FSW can be divided into three parts: frictional heat generated by the tool shoulder, frictional heat generated by the tool pin, and heat generated by material plastic deformation near the pin region

    Welding technology of aluminium alloys using friction stir welding

    Get PDF
    Cilj rada je osvajanje tehnologije zavarivanja aluminijumskih legura postupkom zavarivanja trenjem alatom (FSW). Zavarivanje trenjem alatom predstavlja jedan od najsavremenijih postupaka, sa velikom perspektivom dalje primene, pošto pruža najraznovrsnije mogućnosti za zavarivanje raznorodnih materijala. U radu su analizirani eksperimentalni rezultati su čeono zavarenih spojeva aluminijumskih ploča zavarenih postupkom zavarivanja trenjem alatom. Izvršeno je poređenje raspodele tvrdoće u zavarenom spoju u zavisnosti od parametara zavarivanja odnosno količine unete toplote u zoni zavarivanja, debljine ploča i tipa aluminijumske legure.The objective of this paper is a development of welding technology of aluminium alloys by Friction Stir Welding (FSW). FSW is a very modern welding process with a great future use, primarily due to a variety of possible combinations of dissimilar materials to be welded. In this paper experimental results of butt welds for the friction stir welding of aluminium alloys are analyzed. A comparison hardness distribution in the welds was done considering welding parameters, that is the quantity of heat in the welding zone, panels thickness and aluminum alloy type

    Influence of friction stir welding parameters on properties of 2024 t3 aluminium alloy joints

    Get PDF
    The aim of this work is to analyse the process of friction stir welding (FSW) of 3 mm thick aluminium plates made of high strength aluminium alloy - 2024 T3, as well as to assess the mechanical properties of the produced joints. Friction Stir Welding is a modern procedure which enables joining of similar and dissimilar materials in the solid state, by the combined action of heat and mechanical work. This paper presents an analysis of the experimental results obtained by testing the butt welded joints. Tensile strength of the produced joints is assessed, as well as the distribution of hardness, micro-and macrostructure through the joints (in the base material, nugget, heat affected zone and thermo-mechanically affected zone). Different combinations of the tool rotation speed and the welding speed are used, and the dependence of the properties of the joints on these parameters of welding technology is determined

    Heat generation during plunge stage in friction stir welding

    Get PDF
    This paper deals with the heat generation in the Al alloy Al2024-T3 plate under different rotating speeds and plunge speeds during the plunge stage of friction stir welding (FSW). A three-dimensional finite element model (FEM) is developed in the commercial code ABAQUS/Explicit using the arbitrary Lagrangian-Eulerian formulation, the Johnson-Cook material law and Coulomb’s Law of friction. The heat generation in FSW can be divided into two parts: frictional heat generated by the tool and heat generated by material deformation near the pin and the tool shoulder region. Numerical results obtained in this work indicate a more prominent influence from the friction-generated heat. The slip rate of the tool relative to the workpiece material is related to this portion of heat. The material velocity, on the other hand, is related to the heat generated by plastic deformation. Increasing the plunging speed of the tool decreases the friction-generated heat and increases the amount of deformation-generated heat, while increasing the tool rotating speed has the opposite influence on both heat portions. Numerical results are compared with the experimental ones, in order to validate the numerical model, and a good agreement is obtained

    Numerical simulation of the plunge stage in friction stir welding

    Get PDF
    U ovom radu je istražena faza uranjanja alata primenom numeričkog modeliranja. Trodimenzionalni model konačnih elemenata (FEM) faze uranjanja je razvijen primenom softvera ABAQUS radi proučavanja termomehaničkih procesa koji se odvijaju tokom faze uranjanja. Spregnuti termomehanički 3D FE model se bazira na proizvoljnim formulacijama Lagranža-Ojlera, zakonu materijala Džonson-Kuk i Kulonovom zakonu trenja. Model je razvijen radi proučavanja temperaturskih polja legure Al2024-T351 pod različitim parametrima postupka (brzina rotacije) kod postupka zavarivanja trenjem mešanjem (FSW). Numerički rezultati pokazuju da se maksimalna temperatura postupka FSW može povećati sa povećanjem brzine rotacije, kao i da je temperatura niža od tačke topljenja zavarenog materijala. U ovoj analizi, temperatura, pomeranje i mehanički odzivi se određuju simultano. Izdvajanje toplote kod FSW se može podeliti na tri dela: toplota trenja koja se razvija kretanjem čela alata, toplota trenja dobijena kretanjem trna alata, kao i toplota usled plastične deformacije materijala u blizini oblasti trna alata.This paper investigates the plunge stage using numerical modeling. A three-dimensional finite element model (FEM) of the plunge stage is developed using the commercial code ABAQUS to study the thermo-mechanical processes involved during the plunge stage. A coupled thermo-mechanical 3D FE model uses the arbitrary Lagrangian-Eulerian formulation, the Johnson-Cook material law and Coulomb's Law of friction. The model is developed to study the temperature fields of alloy Al2024-T351 under different process parameters (rotating speed) during the friction stir welding (FSW) process. Numerical results indicate that the maximal temperature of the FSW process can be increased with the increase of rotational speed and that temperature is lower than the melting point of the welding material. In this analysis, temperature, displacement, and mechanical responses are determined simultaneously. The heat generation in FSW can be divided into three parts: frictional heat generated by the tool shoulder, frictional heat generated by the tool pin, and heat generated by material deformation near the pin region

    Influence of friction stir welding parameters on properties of 2024 t3 aluminium alloy joints

    Get PDF
    The aim of this work is to analyse the process of friction stir welding (FSW) of 3 mm thick aluminium plates made of high strength aluminium alloy - 2024 T3, as well as to assess the mechanical properties of the produced joints. Friction Stir Welding is a modern procedure which enables joining of similar and dissimilar materials in the solid state, by the combined action of heat and mechanical work. This paper presents an analysis of the experimental results obtained by testing the butt welded joints. Tensile strength of the produced joints is assessed, as well as the distribution of hardness, micro-and macrostructure through the joints (in the base material, nugget, heat affected zone and thermo-mechanically affected zone). Different combinations of the tool rotation speed and the welding speed are used, and the dependence of the properties of the joints on these parameters of welding technology is determined

    Numerical simulation of the plunge stage in friction stir welding

    Get PDF
    U ovom radu je istražena faza uranjanja alata primenom numeričkog modeliranja. Trodimenzionalni model konačnih elemenata (FEM) faze uranjanja je razvijen primenom softvera ABAQUS radi proučavanja termomehaničkih procesa koji se odvijaju tokom faze uranjanja. Spregnuti termomehanički 3D FE model se bazira na proizvoljnim formulacijama Lagranža-Ojlera, zakonu materijala Džonson-Kuk i Kulonovom zakonu trenja. Model je razvijen radi proučavanja temperaturskih polja legure Al2024-T351 pod različitim parametrima postupka (brzina rotacije) kod postupka zavarivanja trenjem mešanjem (FSW). Numerički rezultati pokazuju da se maksimalna temperatura postupka FSW može povećati sa povećanjem brzine rotacije, kao i da je temperatura niža od tačke topljenja zavarenog materijala. U ovoj analizi, temperatura, pomeranje i mehanički odzivi se određuju simultano. Izdvajanje toplote kod FSW se može podeliti na tri dela: toplota trenja koja se razvija kretanjem čela alata, toplota trenja dobijena kretanjem trna alata, kao i toplota usled plastične deformacije materijala u blizini oblasti trna alata.This paper investigates the plunge stage using numerical modeling. A three-dimensional finite element model (FEM) of the plunge stage is developed using the commercial code ABAQUS to study the thermo-mechanical processes involved during the plunge stage. A coupled thermo-mechanical 3D FE model uses the arbitrary Lagrangian-Eulerian formulation, the Johnson-Cook material law and Coulomb's Law of friction. The model is developed to study the temperature fields of alloy Al2024-T351 under different process parameters (rotating speed) during the friction stir welding (FSW) process. Numerical results indicate that the maximal temperature of the FSW process can be increased with the increase of rotational speed and that temperature is lower than the melting point of the welding material. In this analysis, temperature, displacement, and mechanical responses are determined simultaneously. The heat generation in FSW can be divided into three parts: frictional heat generated by the tool shoulder, frictional heat generated by the tool pin, and heat generated by material deformation near the pin region

    Heat generation during plunge stage in friction stir welding

    Get PDF
    This paper deals with the heat generation in the Al alloy Al2024-T3 plate under different rotating speeds and plunge speeds during the plunge stage of friction stir welding. A 3-D finite element model is developed in the commercial code ABAQUS/Explicit using the arbitrary Lagrangian-Eulerian formulation, the Johnson- Cook material law, and Coulomb’s Law of friction. The heat generation in friction stir welding can be divided into two parts: frictional heat generated by the tool and heat generated by material deformation near the pin and the tool shoulder region. Numerical results obtained in this work indicate a more prominent influence from the friction-generated heat. The slip rate of the tool relative to the workpiece material is related to this portion of heat. The material velocity, on the other hand, is related to the heat generated by plastic deformation. Increasing the plunging speed of the tool decreases the friction-generated heat and increases the amount of deformation-generated heat, while increasing the tool rotating speed has the opposite influence on both heat portions. Numerical results are compared with the experimental ones, in order to validate the numerical model, and a good agreement is obtained

    A coupled thermo-mechanical model of friction stir welding

    No full text
    A coupled thermo-mechanical model was developed to study the temperature fields, the plunge force and the plastic deformations of Al alloy 2024-T351 under different rotating speed: 350, 400 and 450 rpm, during the friction stir welding (FSW) process. Three-dimensional FE model has been developed in ABAQUS/Explicit using the arbitrary Lagrangian-Eulerian formulation, the Johnson-Cook material law and the Coulomb’s Law of friction. Numerical results indicate that the maximum temperature in the FSW process is lower than the melting point of the welding material. The temperature filed is approximately symmetrical along the welding line. A lower plastic strain region can be found near the welding tool in the trailing side on the bottom surface. With increasing rotation speed, the low plastic strain region is reduced. When the rotational speed is increased, the plunge force can be reduced. Regions with high equivalent plastic strains are observed which correspond to the nugget and the flow arm
    corecore