56 research outputs found

    Evolution and diversity of the mechanisms endowing resistance to herbicides inhibiting acetolactate-synthase (ALS) in corn poppy (Papaver rhoeas L.)

    No full text
    International audienceWe investigated the diversity of mechanisms conferring resistance to herbicides inhibiting acetolactate synthase (ALS) in corn poppy (Papaver rhoeas L.) and the processes underlying the selection for resistance. Six mutant ALS alleles, Arg197, His197, Leu197, Ser197, Thr197 and Leu574 were identified in five Italian populations. Different alleles were found in a same population or a same plant. Comparison of individual plant phenotype (herbicide sensitivity) and genotype (amino-acid substitution(s) at codon 197) showed that all mutant ALS alleles conferred dominant resistance to the field rate of the sulfonylurea tribenuron and moderate or no resistance to the field rate of the triazolopyrimidine florasulam. Depending on the allele, dominant or partially dominant resistance to the field rate of the imidazolinone imazamox was observed. Putative non-target-site resistance mechanisms were also likely present in the populations investigated. The derived Cleaved Amplified Polymorphic Sequence assays targeting ALS codons crucial for herbicide sensitivity developed in this work will facilitate the detection of resistance due to mutant ALS alleles. Nucleotide variation around codon 197 indicated that mutant ALS alleles evolved by multiple, independent appearances. Resistance to ALS inhibitors in P. rhoeas clearly evolved by redundant evolution of a set of mutant ALS alleles and likely of non-target-site mechanisms

    Occurrence, genetic control and evolution of non-target-site based resistance to herbicides inhibiting acetolactate synthase (ALS) in the dicot weed Papaver rhoeas

    No full text
    International audienceNon-target-site resistance (NTSR) to herbicides is a major issue for the chemical control of weeds. Whilst predominant in grass weeds, NTSR remains largely uninvestigated in dicot weeds. We investigated the occurrence, inheritance and genetic control of NTSR to acetolactate synthase (ALS) inhibitors in Papaver rhoeas (corn poppy) using progenies from plants with potential NTSR to the imidazolinone herbicide imazamox. NTSR to imazamox was inherited from parents over two successive generations. NTSR to tritosulfuron (a sulfonylurea) was observed in F1 generations and inherited in F2 generations. NTSR to florasulam (a triazolopyrimidine) emerged in F2 generations. Our findings suggest NTSR was polygenic and gradually built-up by accumulation over generations of loci with moderate individual effects in single plants. We also demonstrated that ALS alleles conferring herbicide resistance can co-exist with NTSR loci in P. rhoeas plants. Previous research focussed on TSR in P. rhoeas, which most likely caused underestimation of NTSR significance in this species. This may also apply to other dicot species. From our data, resistance to ALS inhibitors in P. rhoeas appears complex, and involves well-known mutant ALS alleles and a set of unknown NTSR loci that confer resistance to ALS inhibitors from different chemical families

    Les phytoprotecteurs (« Safeners ») associés aux herbicides jouent-ils un rÎle dans la sélection de résistances non liées à la cible ?

    No full text
    SPEGESTADCT1Do herbicide-associated "Safeners" play a role in the selection for non-target-site resistances ? To ensure or improve crop selectivity, some herbicide molecules are applied in association with a “safener”. Safeners are compounds that, at the rate applied, enhance herbicide-degrading metabolic pathways supposedly specifically in crop plants. The metabolic pathways enhanced by safeners in crop plants are highly similar to those exacerbated in taxonomically closely related weed species that evolved non-target-site based resistance (NTSR) to herbicides. Herein, we show an enhancing effect of herbicide safeners on NTSR in a major noxious grass weed: rye-grass (Lolium sp.).Pour assurer ou augmenter la sĂ©lectivitĂ© vis-Ă -vis de la culture de certaines substances herbicides, celles-ci sont appliquĂ©es en association avec un phytoprotecteur (« safener »). Les phytoprotecteurs sont des substances qui, Ă  la dose utilisĂ©e, exacerbent la dĂ©gradation mĂ©tabolique des herbicides spĂ©cifiquement (en thĂ©orie) chez la culture. Les voies mĂ©taboliques exacerbĂ©es par les phytoprotecteurs dans les cultures sont trĂšs similaires Ă  celles exacerbĂ©es dans des adventices taxonomiquement proches et prĂ©sentant une rĂ©sistance non liĂ©e Ă  la cible (RNLC) aux herbicides. Dans ce travail, nous montrons l’existence d’un effet activateur de phytoprotecteurs sur la RNLC chez une graminĂ©e d’importance agronomique majeure : l’Ivraie (Lolium sp., « ray-grass »)

    ‘Universal’ PCR assays detecting mutations in acetyl-coenzyme A carboxylase or acetolactate synthase that endow herbicide resistance in grass weeds

    No full text
    International audienceHerbicides inhibiting acetyl-coenzyme A carboxylase (ACCase) or acetolactate synthase (ALS) are key for grass weed control. Yet, numerous cases of resistance have evolved. Using the derived cleaved amplified polymorphic sequence method, we developed molecular assays to detect amino acid replacements at the seven ACCase codons (1781, 1999, 2027, 2041, 2078, 2088 and 2096) and at two ALS codons (197 and 574) known to play a role in herbicide resistance in grass weeds. For each codon, one assay detecting all known amino acid replacements endowing herbicide resistance was developed. The nine assays were successfully used to genotype ACCase and ALS in 39 grass species. Their flexible design enables easy detection of new mutations at the targeted codons. Because they can be implemented with basic molecular biology facilities and no previous knowledge of the ACCase or ALS sequence of the grass weed of interest, these assays are tools of choice to easily detect resistance caused by alteration(s) of ACCase or ALS in such species

    Sur Coquelicot, des herbicides auxiniques sont dans le rouge

    No full text
    SPEGESTADContexte - AprĂšs des Ă©checs ou des difficultĂ©s de dĂ©sherbage du coquelicot Ă  l’aide d’herbicides analogues d’auxines vĂ©gĂ©tales (groupe HRAC O) en cĂ©rĂ©ales, l’hypothĂšse de la prĂ©sence d’une rĂ©sistance Ă  ces herbicides en France a Ă©tĂ© Ă©tudiĂ©e. ÂŸĂ©tude - Des tests biologiques avec des herbicides du groupe O ont Ă©tĂ© effectuĂ©s sur des populations provenant de parcelles « Ă  problĂšme ». Des tests molĂ©culaires (par PCR) ont Ă©galement permis de rechercher la prĂ©sence de mutations causant une rĂ©sistance aux herbicides inhibiteurs de l’ALS (groupe HRAC B) dans ces populations. rĂ©sultats - Les tests biologiques ont montrĂ© l’existence d’une rĂ©sistance aux deux herbicides du groupe O Ă©tudiĂ©s (2,4-D et MCPA) dans sept populations d’origines diverses. Les tests PCR ont Ă©galement dĂ©tectĂ© une forte frĂ©quence de mutations au codon 197 de l’ALS entraĂźnant une rĂ©sistance aux herbicides du groupe B dans ces populations. Des plantes rĂ©sistantes au 2,4-D et/ou au MCPA contiennent aussi des mutations de l’ALS, et sont donc Ă©galement rĂ©sistantes aux herbicides du groupe B. La rĂ©sistance Ă  ces deux modes d’action herbicides est une trĂšs mauvaise nouvelle pour le contrĂŽle chimique du coquelicot en cĂ©rĂ©ales. Notre Ă©tude souligne encore une fois la nĂ©cessitĂ© de bien raisonner l’emploi des herbicides, et de les intĂ©grer dans un ensemble aussi diversifiĂ© que possible de pratiques de dĂ©sherbage

    Résistance du coquelicot aux inhibiteurs de l'ALS: La mise au point d'outils de diagnostic rapide a permis de révéler la présence de cette résistance en France

    No full text
    National audienceLes inhibiteurs de l'acĂ©tolactate-synthase (ALS) sont actuellement la principale famille d'herbicides utilisĂ©s en France. La capacitĂ© de diagnostiquer rapidement la prĂ©sence de plantes rĂ©sistantes dans les parcelles contribue au maintien de leur efficacitĂ©. Des tests « ADN » ont Ă©tĂ© dĂ©veloppĂ©s chez les coquelicots (Papaver rhoeas, Papaver dubium et Papaver argemone) pour dĂ©tecter les mutations de l'ALS confĂ©rant une rĂ©sistance Ă  des herbicides. Les tests ont servi Ă  analyser des plantes de coquelicots provenant de parcelles oĂč des Ă©checs de contrĂŽle par des inhibiteurs de l'ALS ont Ă©tĂ© observĂ©s. Ils ont rĂ©vĂ©lĂ© la prĂ©sence de mutations de l'ALS en frĂ©quences Ă©levĂ©es dans 27 des 29 parcelles Ă©tudiĂ©es. La prĂ©sence de rĂ©sistances aux inhibiteurs de l'ALS chez les coquelicots est donc une rĂ©alitĂ© en France. Seules des mutations au codon 197de l'ALS ont Ă©tĂ© identifiĂ©es dans les parcelles Ă©tudiĂ©es. De ce fait, l'emploi du test ADN ciblant ce codon devrait suffire pour diagnostiquer la plupart des cas de rĂ©sistance aux inhibiteurs de l'ALS chez les coquelicots. Ce travail souligne la nĂ©cessitĂ© de raisonner l'emploi des inhibiteurs de l'ALS, et d'inclure ces herbicides dans un ensemble aussi diversifiĂ© que possible de pratiques de dĂ©sherbag

    Vulpin et ivraies, détecter vite les résistances à certains herbicides blé

    No full text
    National audienceHerbicides inhibiting acetolactate-synthase (ALS) are currently of major importance for grass weed control in wheat in France. Rapid resistance diagnosis can help upholding their efficacy. Most cases of resistance to ALS-inhibiting herbicides are due to mutations in the gene encoding ALS. DNA-based assays were developed to detect any ALS mutation endowing resistance in black-grass (Alopecurus myosuroides) and ryegrasses (Lolium spp.). These tests enable resistance diagnosis from leaf fragments, even dried, within 48 hours. They were used to analyse black-grasses and ryegrasses sampled in fields where ALS inhibitor application failures were reported. The tests detected high frequencies of ALS mutations in 9 out of the 22 samples analysed. ALS-based resistance can likely evolve rapidly in some cases, especially when herbicide spraying programs are mostly based upon ALS inhibitors targeting grass weeds. This emphasizes the need to ponder ALS inhibitor applications, and to use them in association with the highest possible diversity of cultural practices.Les inhibiteurs de l’acĂ©tolactate-synthase (ALS) sont actuellement une classe majeure d’herbicides pour le dĂ©sherbage des graminĂ©es dans le blĂ©. La capacitĂ© de diagnostiquer rapidement la prĂ©sence de plantes rĂ©sistantes dans les parcelles contribue au maintien de leur efficacitĂ©. La plupart des cas de rĂ©sistance Ă  ces substances sont dus Ă  des mutations dans le gĂšne de l’ALS. Des tests « ADN » ont Ă©tĂ© dĂ©veloppĂ©s chez les principales graminĂ©es adventices du blĂ©, le vulpin (Alopecurus myosuroides) et les ivraies (Lolium spp.). Ces tests permettent de dĂ©tecter n’importe quelle mutation dans l’ALS connue pour confĂ©rer une rĂ©sistance. Le diagnostic peut ĂȘtre obtenu 48 heures aprĂšs l’arrivĂ©e des Ă©chantillons (feuilles, mĂȘme sĂšches) au laboratoire. Les tests ont servi Ă  analyser des Ă©chantillons d’ivraies et de vulpin provenant de parcelles oĂč des Ă©checs de contrĂŽle de ces adventices par des inhibiteurs de l’ALS ont Ă©tĂ© observĂ©s. Ils ont rĂ©vĂ©lĂ© la prĂ©sence de mutations de l’ALS en frĂ©quences Ă©levĂ©es dans 9 des 22 Ă©chantillons Ă©tudiĂ©s. La rĂ©sistance liĂ©e Ă  l’ALS semble pouvoir Ă©voluer rapidement dans certains cas, notamment si le programme de dĂ©sherbage est basĂ© essentiellement sur des inhibiteurs de l’ALS anti-graminĂ©es. Ceci souligne la nĂ©cessitĂ© de raisonner l’emploi de ces molĂ©cules et de les inclure dans un ensemble diversifiĂ© de pratiques culturales

    Herbicide Safeners Decrease Sensitivity to Herbicides Inhibiting Acetolactate-Synthase and Likely Activate Non-Target-Site-Based Resistance Pathways in the Major Grass Weed <em>Lolium</em> sp (Rye-Grass)

    No full text
    SPE GESTAD INRA DOCT CT EJInternational audienceHerbicides are currently pivotal to control weeds and sustain food security. Herbicides must efficiently kill weeds while being as harmless as possible for crops, even crops taxonomically close to weeds. To increase their selectivity toward crops, some herbicides are sprayed in association with safeners that are bioactive compounds exacerbating herbicide-degrading pathways reputedly specifically in crops. However, exacerbated herbicide metabolism is also a key mechanism underlying evolved non-target-site-based resistance to herbicides (NTSR) in weeds. This raised the issue of a possible role of safeners on NTSR evolution in weeds. We investigated a possible effect of the respective field rates of the two broadly used safeners cloquintocet-mexyl and mefenpyr-diethyl on the sensitivity of the troublesome global weed Lolium sp. (rye-grass) to the major herbicides inhibiting acetolactate-synthase (ALS) pyroxsulam and iodosulfuron + mesosulfuron, respectively. Three Lolium sp. populations were studied in three series of experiments. The first experiment series compared the frequencies of plants surviving application of each herbicide alone or in association with its safener. Safener co-application caused a net increase ranging from 5.0 to 46.5% in the frequency of plants surviving the field rate of their associated herbicide. In a second series of experiments, safener effect was assessed on individual plant sensitivity using vegetative propagation. A reduction in sensitivity to pyroxsulam and to iodosulfuron + mesosulfuron was observed for 44.4 and 11.1% of the plants in co-treatment with cloquintocet-mexyl and mefenpyr-diethyl, respectively. A third series of experiments investigated safener effect on the expression level of 19 Lolium sp. NTSR marker genes. Safeners showed an enhancing effect on the expression level of 10 genes. Overall, we demonstrated that cloquintocet-mexyl and mefenpyr-diethyl both reduced the sensitivity of Lolium sp. to their associated ALS-inhibiting herbicide and most likely exacerbated herbicide-degrading secondary metabolism pathways. This suggests that genetic variation for safener response is present in Lolium sp. Thus, a possible, uninvestigated way to NTSR evolution could be selection for increased responsiveness to safener action. Delivering safeners exclusively to the crop could mitigate the risk for NTSR evolution in weeds
    • 

    corecore