439 research outputs found

    Using NSPT for the Removal of Hypercubic Lattice Artifacts

    Full text link
    The treatment of hypercubic lattice artifacts is essential for the calculation of non-perturbative renormalization constants of RI-MOM schemes. It has been shown that for the RI'-MOM scheme a large part of these artifacts can be calculated and subtracted with the help of diagrammatic Lattice Perturbation Theory (LPT). Such calculations are typically restricted to 1-loop order, but one may overcome this limitation and calculate hypercubic corrections for any operator and action beyond the 1-loop order using Numerical Stochastic Perturbation Theory (NSPT). In this study, we explore the practicability of such an approach and consider, as a first test, the case of Wilson fermion bilinear operators in a quenched theory. Our results allow us to compare boosted and unboosted perturbative corrections up to the 3-loop order.Comment: 7 pages, 6 figures, talk presented at the 32nd International Symposium on Lattice Field Theory (Lattice 2014), 23-28 June 2014, New York, USA; PoS(LATTICE2014)29

    The lattice ghost propagator in Landau gauge up to three loops using Numerical Stochastic Perturbation Theory

    Full text link
    We complete our high-accuracy studies of the lattice ghost propagator in Landau gauge in Numerical Stochastic Perturbation Theory up to three loops. We present a systematic strategy which allows to extract with sufficient precision the non-logarithmic parts of logarithmically divergent quantities as a function of the propagator momentum squared in the infinite-volume and a→0a\to 0 limits. We find accurate coincidence with the one-loop result for the ghost self-energy known from standard Lattice Perturbation Theory and improve our previous estimate for the two-loop constant contribution to the ghost self-energy in Landau gauge. Our results for the perturbative ghost propagator are compared with Monte Carlo measurements of the ghost propagator performed by the Berlin Humboldt university group which has used the exponential relation between potentials and gauge links.Comment: 8 pages, 6 figures, XXVII International Symposium on Lattice Field Theory - LAT2009, Beijin

    Discretization Errors for the Gluon and Ghost Propagators in Landau Gauge using NSPT

    Full text link
    The subtraction of hypercubic lattice corrections, calculated at 1-loop order in lattice perturbation theory (LPT), is common practice, e.g., for determinations of renormalization constants in lattice hadron physics. Providing such corrections beyond 1-loop order is however very demanding in LPT, and numerical stochastic perturbation theory (NSPT) might be the better candidate for this. Here we report on a first feasibility check of this method and provide (in a parametrization valid for arbitrary lattice couplings) the lattice corrections up to 3-loop order for the SU(3) gluon and ghost propagators in Landau gauge. These propagators are ideal candidates for such a check, as they are available from lattice simulations to high precision and can be combined to a renormalization group invariant product (Minimal MOM coupling) for which a 1-loop LPT correction was found to be insufficient to remove the bulk of the hypercubic lattice artifacts from the data. As a bonus, we also compare our results with the ever popular H(4) method.Comment: 7 pages, 5 figures, presented at the 31st International Symposium on Lattice Field Theory (Lattice 2013), 29 July - 3 August 2013, Mainz, German

    The SU(3) Beta Function from Numerical Stochastic Perturbation Theory

    Get PDF
    The SU(3) beta function is computed from Wilson loops to 20th order numerical stochastic perturbation theory. An attempt is made to include massless fermions, whose contribution is known analytically to 4th order. The question whether the theory admits an infrared stable fixed point is addressed.Comment: 10 pages, 7 figures, version to be published in Physics Letters

    Two-point functions of quenched lattice QCD in Numerical Stochastic Perturbation Theory. (I) The ghost propagator in Landau gauge

    Get PDF
    This is the first of a series of two papers on the perturbative computation of the ghost and gluon propagators in SU(3) Lattice Gauge Theory. Our final aim is to eventually compare with results from lattice simulations in order to enlight the genuinely non-perturbative content of the latter. By means of Numerical Stochastic Perturbation Theory we compute the ghost propagator in Landau gauge up to three loops. We present results in the infinite volume and a→0a \to 0 limits, based on a general strategy that we discuss in detail.Comment: 27 pages, 11 figure

    Two-point functions of quenched lattice QCD in Numerical Stochastic Perturbation Theory

    Get PDF
    We summarize the higher-loop perturbative computation of the ghost and gluon propagators in SU(3) Lattice Gauge Theory. Our final aim is to compare with results from lattice simulations in order to expose the genuinely non-perturbative content of the latter. By means of Numerical Stochastic Perturbation Theory we compute the ghost and gluon propagators in Landau gauge up to three and four loops. We present results in the infinite volume and a→0a \to 0 limits, based on a general fitting strategy.Comment: 3 pages, 5 figures, talk at conference QCHS-IX, Madrid 201
    • …
    corecore