2,916 research outputs found

    Flaring X-ray Emission from HST-1, a Knot in the M87 Jet

    Full text link
    We present Chandra X-ray monitoring of the M87 jet in 2002, which shows that the intensity of HST-1, an optical knot 0.8" from the core, increased by a factor of two in 116 days and a factor of four in 2 yrs. There was also a significant flux decrease over two months, with suggestive evidence for a softening of the spectrum. From this variability behavior, we argue that the bulk of the X-ray emission of HST-1 comes from synchrotron emission. None of the other conceivable emission processes can match the range of observed characteristics. By estimating synchrotron model parameters for various bulk relativistic velocities, we demonstrate that a model with a Doppler factor, delta, in the range 2 to 5 fits our preliminary estimates of light travel time and synchrotron loss timescales.Comment: 4 pages with 3 embedded figures; 1 of which is color but prints ok in b/w. Accepted for publication in the ApJ

    Month-Timescale Optical Variability in the M87 Jet

    Full text link
    A previously inconspicuous knot in the M87 jet has undergone a dramatic outburst and now exceeds the nucleus in optical and X-ray luminosity. Monitoring of M87 with the Hubble Space Telescope and Chandra X-ray Observatory during 2002-2003, has found month-timescale optical variability in both the nucleus and HST-1, a knot in the jet 0.82'' from the nucleus. We discuss the behavior of the variability timescales as well as spectral energy distribution of both components. In the nucleus, we see nearly energy-independent variability behavior. Knot HST-1, however, displays weak energy dependence in both X-ray and optical bands, but with nearly comparable rise/decay timescales at 220 nm and 0.5 keV. The flaring region of HST-1 appears stationary over eight months of monitoring. We consider various emission models to explain the variability of both components. The flares we see are similar to those seen in blazars, albeit on longer timescales, and so could, if viewed at smaller angles, explain the extreme variability properties of those objects.Comment: 4 pages, 3 figures, ApJ Lett., in pres

    Ultraviolet HST Observations of the Jet in M87

    Full text link
    We present new ultraviolet photometry of the jet in M87 obtained from HST WFPC2 imaging. We combine these ultraviolet data with previously published photometry for the knots of the jet in radio, optical, and X-ray, and fit three theoretical synchrotron models to the full data set. The synchrotron models consistently overpredict the flux in the ultraviolet when fit over the entire dataset. We show that if the fit is restricted to the radio through ultraviolet data, the synchrotron models can provide a good match to the data. The break frequencies of these fits are much lower than previous estimates. The implied synchrotron lifetimes for the bulk of the emitting population are longer than earlier work, but still much shorter than the estimated kinematic lifetimes of the knots. The observed X-ray flux cannot be successfully explained by the simple synchrotron models that fit the ultraviolet and optical fluxes. We discuss the possible implications of these results for the physical properties of the M87 jet. We also observe increased flux for the HST-1 knot that is consistent with previous results for flaring. This observation fills in a significant gap in the time coverage early in the history of the flare, and therefore sets constraints on the initial brightening of the flare.Comment: 14 pages, 2 figures, Accepted for publication in ApJ, changed lightcurve and caption in Figure

    The Event Horizon of M87

    Get PDF
    The 6 billion solar mass supermassive black hole at the center of the giant elliptical galaxy M87 powers a relativistic jet. Observations at millimeter wavelengths with the Event Horizon Telescope have localized the emission from the base of this jet to angular scales comparable to the putative black hole horizon. The jet might be powered directly by an accretion disk or by electromagnetic extraction of the rotational energy of the black hole. However, even the latter mechanism requires a confining thick accretion disk to maintain the required magnetic flux near the black hole. Therefore, regardless of the jet mechanism, the observed jet power in M87 implies a certain minimum mass accretion rate. If the central compact object in M87 were not a black hole but had a surface, this accretion would result in considerable thermal near-infrared and optical emission from the surface. Current flux limits on the nucleus of M87 strongly constrain any such surface emission. This rules out the presence of a surface and thereby provides indirect evidence for an event horizon.Comment: 9 pages, 2 figures, submitted to Ap

    The X-ray Emissions from the M87 Jet: Diagnostics and Physical Interpretation

    Full text link
    We reanalyze the deep Chandra observations of the M87 jet, first examined by Wilson & Yang (2002). By employing an analysis chain that includes image deconvolution, knots HST-1 and I are fully separated from adjacent emission. We find slight but significant variations in the spectral shape, with values of αx\alpha_x ranging from ∌1.2−1.6\sim 1.2-1.6. We use VLA radio observations, as well as HST imaging and polarimetry data, to examine the jet's broad-band spectrum and inquire as to the nature of particle acceleration in the jet. As shown in previous papers, a simple continuous injection model for synchrotron-emitting knots, in which both the filling factor, faccf_{acc}, of regions within which particles are accelerated and the energy spectrum of the injected particles are constant, cannot account for the X-ray flux or spectrum. Instead, we propose that faccf_{acc} is a function of position and energy and find that in the inner jet, facc∝Eγ−0.4±0.2∝Ee−0.2±0.1f_{acc} \propto E_\gamma^{-0.4 \pm 0.2} \propto E_e^{-0.2 \pm 0.1}, and in knots A and B, facc∝Eγ−0.7±0.2∝Ee−0.35±0.1f_{acc} \propto E_\gamma^{-0.7 \pm 0.2} \propto E_e^{-0.35 \pm 0.1}, where EÎłE_\gamma is the emitted photon energy and and EeE_e is the emitting electron energy. In this model, the index pp of the injected electron energy spectrum (n(Ee)∝Ee−pn(E_{e}) \propto E_{e}^{-p}) is p=2.2p=2.2 at all locations in the jet, as predicted by models of cosmic ray acceleration by ultrarelativistic shocks. There is a strong correlation between the peaks of X-ray emission and minima of optical percentage polarization, i.e., regions where the jet magnetic field is not ordered. We suggest that the X-ray peaks coincide with shock waves which accelerate the X-ray emitting electrons and cause changes in the direction of the magnetic field; the polarization is thus small because of beam averaging.Comment: Accepted for publication in ApJ; 21 pages, 9 figures, 2 tables; abstract shortened for astro-ph; Figures 1, 7 and 8 at reduced resolutio

    Large-Scale Regular Morphological Patterns in the Radio Jet of NGC 6251

    Get PDF
    We report on large-scale, regular morphological patterns found in the radio jet of the nearby radio galaxy NGC 6251. Investigating morphological properties of this radio jet from the nucleus to a radial distance of ∌\sim 300 arcsec (≈\approx 140 kpc) mapped at 1662 MHz and 4885 MHz by Perley, Bridle, & Willis, we find three chains, each of which consists of five radio knots. We also find that eight radio knots in the first two chains consist of three small sub-knots (the triple-knotty substructures). We discuss the observational properties of these regular morphological patterns.Comment: 8 figures, 15 pages, accepted for publication in A

    The Mid-Infrared Emission of M87

    Get PDF
    We discuss Subaru and Spitzer Space Telescope imaging and spectroscopy of M87 in the mid-infrared from 5-35 um. These observations allow us to investigate mid-IR emission mechanisms in the core of M87 and to establish that the flaring, variable jet component HST-1 is not a major contributor to the mid-IR flux. The Spitzer data include a high signal-to-noise 15-35 Ό\mum spectrum of the knot A/B complex in the jet, which is consistent with synchrotron emission. However, a synchrotron model cannot account for the observed {\it nuclear} spectrum, even when contributions from the jet, necessary due to the degrading of resolution with wavelength, are included. The Spitzer data show a clear excess in the spectrum of the nucleus at wavelengths longer than 25 um, which we model as thermal emission from cool dust at a characteristic temperature of 55 \pm 10 K, with an IR luminosity \sim 10^{39} {\rm ~erg ~s^{-1}}. Given Spitzer's few-arcsecond angular resolution, the dust seen in the nuclear spectrum could be located anywhere within ~5'' (390 pc) of the nucleus. In any case, the ratio of AGN thermal to bolometric luminosity indicates that M87 does not contain the IR-bright torus that classical unified AGN schemes invoke. However, this result is consistent with theoretical predictions for low-luminosity AGNsComment: 9 pages, 7 figures, ApJ, in pres
    • 

    corecore