2,916 research outputs found
Flaring X-ray Emission from HST-1, a Knot in the M87 Jet
We present Chandra X-ray monitoring of the M87 jet in 2002, which shows that
the intensity of HST-1, an optical knot 0.8" from the core, increased by a
factor of two in 116 days and a factor of four in 2 yrs. There was also a
significant flux decrease over two months, with suggestive evidence for a
softening of the spectrum. From this variability behavior, we argue that the
bulk of the X-ray emission of HST-1 comes from synchrotron emission. None of
the other conceivable emission processes can match the range of observed
characteristics. By estimating synchrotron model parameters for various bulk
relativistic velocities, we demonstrate that a model with a Doppler factor,
delta, in the range 2 to 5 fits our preliminary estimates of light travel time
and synchrotron loss timescales.Comment: 4 pages with 3 embedded figures; 1 of which is color but prints ok in
b/w. Accepted for publication in the ApJ
Month-Timescale Optical Variability in the M87 Jet
A previously inconspicuous knot in the M87 jet has undergone a dramatic
outburst and now exceeds the nucleus in optical and X-ray luminosity.
Monitoring of M87 with the Hubble Space Telescope and Chandra X-ray Observatory
during 2002-2003, has found month-timescale optical variability in both the
nucleus and HST-1, a knot in the jet 0.82'' from the nucleus. We discuss the
behavior of the variability timescales as well as spectral energy distribution
of both components. In the nucleus, we see nearly energy-independent
variability behavior. Knot HST-1, however, displays weak energy dependence in
both X-ray and optical bands, but with nearly comparable rise/decay timescales
at 220 nm and 0.5 keV. The flaring region of HST-1 appears stationary over
eight months of monitoring. We consider various emission models to explain the
variability of both components. The flares we see are similar to those seen in
blazars, albeit on longer timescales, and so could, if viewed at smaller
angles, explain the extreme variability properties of those objects.Comment: 4 pages, 3 figures, ApJ Lett., in pres
Ultraviolet HST Observations of the Jet in M87
We present new ultraviolet photometry of the jet in M87 obtained from HST
WFPC2 imaging. We combine these ultraviolet data with previously published
photometry for the knots of the jet in radio, optical, and X-ray, and fit three
theoretical synchrotron models to the full data set. The synchrotron models
consistently overpredict the flux in the ultraviolet when fit over the entire
dataset. We show that if the fit is restricted to the radio through ultraviolet
data, the synchrotron models can provide a good match to the data. The break
frequencies of these fits are much lower than previous estimates. The implied
synchrotron lifetimes for the bulk of the emitting population are longer than
earlier work, but still much shorter than the estimated kinematic lifetimes of
the knots. The observed X-ray flux cannot be successfully explained by the
simple synchrotron models that fit the ultraviolet and optical fluxes. We
discuss the possible implications of these results for the physical properties
of the M87 jet. We also observe increased flux for the HST-1 knot that is
consistent with previous results for flaring. This observation fills in a
significant gap in the time coverage early in the history of the flare, and
therefore sets constraints on the initial brightening of the flare.Comment: 14 pages, 2 figures, Accepted for publication in ApJ, changed
lightcurve and caption in Figure
The Event Horizon of M87
The 6 billion solar mass supermassive black hole at the center of the giant
elliptical galaxy M87 powers a relativistic jet. Observations at millimeter
wavelengths with the Event Horizon Telescope have localized the emission from
the base of this jet to angular scales comparable to the putative black hole
horizon. The jet might be powered directly by an accretion disk or by
electromagnetic extraction of the rotational energy of the black hole. However,
even the latter mechanism requires a confining thick accretion disk to maintain
the required magnetic flux near the black hole. Therefore, regardless of the
jet mechanism, the observed jet power in M87 implies a certain minimum mass
accretion rate. If the central compact object in M87 were not a black hole but
had a surface, this accretion would result in considerable thermal
near-infrared and optical emission from the surface. Current flux limits on the
nucleus of M87 strongly constrain any such surface emission. This rules out the
presence of a surface and thereby provides indirect evidence for an event
horizon.Comment: 9 pages, 2 figures, submitted to Ap
The X-ray Emissions from the M87 Jet: Diagnostics and Physical Interpretation
We reanalyze the deep Chandra observations of the M87 jet, first examined by
Wilson & Yang (2002). By employing an analysis chain that includes image
deconvolution, knots HST-1 and I are fully separated from adjacent emission. We
find slight but significant variations in the spectral shape, with values of
ranging from . We use VLA radio observations, as well
as HST imaging and polarimetry data, to examine the jet's broad-band spectrum
and inquire as to the nature of particle acceleration in the jet. As shown in
previous papers, a simple continuous injection model for synchrotron-emitting
knots, in which both the filling factor, , of regions within which
particles are accelerated and the energy spectrum of the injected particles are
constant, cannot account for the X-ray flux or spectrum. Instead, we propose
that is a function of position and energy and find that in the inner
jet, , and
in knots A and B, , where is the emitted photon energy and and is the
emitting electron energy. In this model, the index of the injected electron
energy spectrum () is at all locations in
the jet, as predicted by models of cosmic ray acceleration by ultrarelativistic
shocks. There is a strong correlation between the peaks of X-ray emission and
minima of optical percentage polarization, i.e., regions where the jet magnetic
field is not ordered. We suggest that the X-ray peaks coincide with shock waves
which accelerate the X-ray emitting electrons and cause changes in the
direction of the magnetic field; the polarization is thus small because of beam
averaging.Comment: Accepted for publication in ApJ; 21 pages, 9 figures, 2 tables;
abstract shortened for astro-ph; Figures 1, 7 and 8 at reduced resolutio
Large-Scale Regular Morphological Patterns in the Radio Jet of NGC 6251
We report on large-scale, regular morphological patterns found in the radio
jet of the nearby radio galaxy NGC 6251. Investigating morphological properties
of this radio jet from the nucleus to a radial distance of 300 arcsec
( 140 kpc) mapped at 1662 MHz and 4885 MHz by Perley, Bridle, &
Willis, we find three chains, each of which consists of five radio knots. We
also find that eight radio knots in the first two chains consist of three small
sub-knots (the triple-knotty substructures). We discuss the observational
properties of these regular morphological patterns.Comment: 8 figures, 15 pages, accepted for publication in A
The Mid-Infrared Emission of M87
We discuss Subaru and Spitzer Space Telescope imaging and spectroscopy of M87
in the mid-infrared from 5-35 um. These observations allow us to investigate
mid-IR emission mechanisms in the core of M87 and to establish that the
flaring, variable jet component HST-1 is not a major contributor to the mid-IR
flux. The Spitzer data include a high signal-to-noise 15-35 m spectrum of
the knot A/B complex in the jet, which is consistent with synchrotron emission.
However, a synchrotron model cannot account for the observed {\it nuclear}
spectrum, even when contributions from the jet, necessary due to the degrading
of resolution with wavelength, are included. The Spitzer data show a clear
excess in the spectrum of the nucleus at wavelengths longer than 25 um, which
we model as thermal emission from cool dust at a characteristic temperature of
55 \pm 10 K, with an IR luminosity \sim 10^{39} {\rm ~erg ~s^{-1}}. Given
Spitzer's few-arcsecond angular resolution, the dust seen in the nuclear
spectrum could be located anywhere within ~5'' (390 pc) of the nucleus. In any
case, the ratio of AGN thermal to bolometric luminosity indicates that M87 does
not contain the IR-bright torus that classical unified AGN schemes invoke.
However, this result is consistent with theoretical predictions for
low-luminosity AGNsComment: 9 pages, 7 figures, ApJ, in pres
- âŠ