2,580 research outputs found

    Discovery of a very X-ray luminous galaxy cluster at z=0.89 in the WARPS survey

    Get PDF
    We report the discovery of the galaxy cluster ClJ1226.9+3332 in the Wide Angle ROSAT Pointed Survey (WARPS). At z=0.888 and L_X=1.1e45 erg/s (0.5-2.0 keV, h_0=0.5) ClJ1226.9+3332 is the most distant X-ray luminous cluster currently known. The mere existence of this system represents a huge problem for Omega_0=1 world models. At the modest (off-axis) resolution of the ROSAT PSPC observation in which the system was detected, ClJ1226.9+3332 appears relaxed; an off-axis HRI observation confirms this impression and rules out significant contamination from point sources. However, in moderately deep optical images (R and I band) the cluster exhibits signs of substructure in its apparent galaxy distribution. A first crude estimate of the velocity dispersion of the cluster galaxies based on six redshifts yields a high value of 1650 km/s, indicative of a very massive cluster and/or the presence of substructure along the line of sight. While a more accurate assessment of the dynamical state of this system requires much better data at both optical and X-ray wavelengths, the high mass of the cluster has already been unambiguously confirmed by a very strong detection of the Sunyaev-Zel'dovich effect in its direction (Joy et al. 2001). Using ClJ1226.9+3332 and ClJ0152.7-1357 (z=0.835), the second-most distant X-ray luminous cluster currently known and also a WARPS discovery, we obtain a first estimate of the cluster X-ray luminosity function at 0.8<z<1.4 and L_X>5e44 erg/s. Using the best currently available data, we find the comoving space density of very distant, massive clusters to be in excellent agreement with the value measured locally (z<0.3), and conclude that negative evolution is not required at these luminosities out to z~1. (truncated)Comment: accepted for publication in ApJ Letters, 6 pages, 2 figures, uses emulateapj.st

    Large-Scale Regular Morphological Patterns in the Radio Jet of NGC 6251

    Get PDF
    We report on large-scale, regular morphological patterns found in the radio jet of the nearby radio galaxy NGC 6251. Investigating morphological properties of this radio jet from the nucleus to a radial distance of ∌\sim 300 arcsec (≈\approx 140 kpc) mapped at 1662 MHz and 4885 MHz by Perley, Bridle, & Willis, we find three chains, each of which consists of five radio knots. We also find that eight radio knots in the first two chains consist of three small sub-knots (the triple-knotty substructures). We discuss the observational properties of these regular morphological patterns.Comment: 8 figures, 15 pages, accepted for publication in A

    The WARPS survey - IV: The X-ray luminosity-temperature relation of high redshift galaxy clusters

    Get PDF
    We present a measurement of the cluster X-ray luminosity-temperature relation out to high redshift (z~0.8). Combined ROSAT PSPC spectra of 91 galaxy clusters detected in the Wide Angle ROSAT Pointed Survey (WARPS) are simultaneously fit in redshift and luminosity bins. The resulting temperature and luminosity measurements of these bins, which occupy a region of the high redshift L-T relation not previously sampled, are compared to existing measurements at low redshift in order to constrain the evolution of the L-T relation. We find a best fit to low redshift (z1 keV, to be L proportional to T^(3.15\pm0.06). Our data are consistent with no evolution in the normalisation of the L-T relation up to z~0.8. Combining our results with ASCA measurements taken from the literature, we find eta=0.19\pm0.38 (for Omega_0=1, with 1 sigma errors) where L_Bol is proportional to (1 + z)^eta T^3.15, or eta=0.60\pm0.38 for Omega_0=0.3. This lack of evolution is considered in terms of the entropy-driven evolution of clusters. Further implications for cosmological constraints are also discussed.Comment: 11 pages, 7 figures, accepted for publication in MNRA

    Continuing a Chandra Survey of Quasar Radio Jets

    Full text link
    We are conducting an X-ray survey of flat spectrum radio quasars (FSRQs) with extended radio structures. We summarize our results from the first stage of our survey, then we present findings from its continuation. We have discovered jet X-ray emission from 12 of our first 20 Chandra targets, establishing that strong 0.5-7.0 keV emission is a common feature of FSRQ jets. The X-ray morphology is varied, but in general closely matches the radio structure until the first sharp radio bend. In the sources with optical data as well as X-ray detections we rule out simple synchrotron models for X-ray emission, suggesting these systems may instead be dominated by inverse Compton (IC) scattering. Fitting models of IC scattering of cosmic microwave background photons suggests that these jets are aligned within a few degrees of our line of sight, with bulk Lorentz factors of a few to ten and magnetic fields a bit stronger than 10−510^{-5} G. In the weeks prior to this meeting, we have discovered two new X-ray jets at z>1z > 1. One (PKS B1055+201) has a dramatic, 20â€Čâ€Č20''-long jet. The other (PKS B1421-490) appears unremarkable at radio frequencies, but at higher frequencies the jet is uniquely powerful: its optically-dominated, with jet/core flux ratios of 3.7 at 1 keV and 380 at 480 nm.Comment: 4 pages, 8 figures. To appear in `X-Ray and Radio Connections', ed. L.O. Sjouwerman and K.K. Dyer (published electronicly at http://www.aoc.nrao.edu/events/xraydio/). Additional material and higher resolution figures may be found at http://space.mit.edu/home/jonathan/jets

    A Flare in the Jet of Pictor A

    Get PDF
    A Chandra X-ray imaging observation of the jet in Pictor A showed a feature that appears to be a flare that faded between 2000 and 2002. The feature was not detected in a follow-up observation in 2009. The jet itself is over 150 kpc long and a kpc wide, so finding year-long variability is surprising. Assuming a synchrotron origin of the observed high-energy photons and a minimum energy condition for the outflow, the synchrotron loss time of the X-ray emitting electrons is of order 1200 yr, which is much longer than the observed variability timescale. This leads to the possibility that the variable X-ray emission arises from a very small sub-volume of the jet, characterized by magnetic field that is substantially larger than the average over the jet.Comment: 12 pages, 3 figures, to appear in Ap. J. Letter

    A Multi-Wavelength Study of the Jet, Lobes and Core of the Quasar PKS 2101-490

    Get PDF
    We present a detailed study of the X-ray, optical and radio emission from the jet, lobes and core of the quasar PKS 2101-490 as revealed by new Chandra, HST and ATCA images. We extract the radio to X-ray spectral energy distributions from seven regions of the 13 arcsecond jet, and model the jet X-ray emission in terms of Doppler beamed inverse Compton scattering of the cosmic microwave background (IC/CMB) for a jet in a state of equipartition between particle and magnetic field energy densities. This model implies that the jet remains highly relativistic hundreds of kpc from the nucleus, with a bulk Lorentz factor Gamma ~ 6 and magnetic field of order 30 microGauss. We detect an apparent radiative cooling break in the synchrotron spectrum of one of the jet knots, and are able to interpret this in terms of a standard one-zone continuous injection model, based on jet parameters derived from the IC/CMB model. However, we note apparent substructure in the bright optical knot in one of the HST bands. We confront the IC/CMB model with independent estimates of the jet power, and find that the IC/CMB model jet power is consistent with the independent estimates, provided that the minimum electron Lorentz factor gamma_min > 50, and the knots are significantly longer than the jet width, as implied by de-projection of the observed knot lengths.Comment: 16 pages, 10 figures, 6 table

    The WARPS Survey. VIII. Evolution of the Galaxy Cluster X-ray Luminosity Function

    Full text link
    We present measurements of the galaxy cluster X-ray Luminosity Function (XLF) from the Wide Angle ROSAT Pointed Survey (WARPS) and quantify its evolution. WARPS is a serendipitous survey of the central region of ROSAT pointed observations and was carried out in two phases (WARPS-I and WARPS-II). The results here are based on a final sample of 124 clusters, complete above a flux limit of 6.5 10E-15 erg/s/cm2, with members out to redshift z ~ 1.05, and a sky coverage of 70.9 deg2. We find significant evidence for negative evolution of the XLF, which complements the majority of X-ray cluster surveys. To quantify the suggested evolution, we perform a maximum likelihood analysis and conclude that the evolution is driven by a decreasing number density of high luminosity clusters with redshift, while the bulk of the cluster population remains nearly unchanged out to redshift z ~ 1.1, as expected in a low density Universe. The results are found to be insensitive to a variety of sources of systematic uncertainty that affect the measurement of the XLF and determination of the survey selection function. We perform a Bayesian analysis of the XLF to fully account for uncertainties in the local XLF on the measured evolution, and find that the detected evolution remains significant at the 95% level. We observe a significant excess of clusters in the WARPS at 0.1 < z < 0.3 and LX ~ 2 10E42 erg/s compared with the reference low-redshift XLF, or our Bayesian fit to the WARPS data. We find that the excess cannot be explained by sample variance, or Eddington bias, and is unlikely to be due to problems with the survey selection function.Comment: 13 pages, 12 figures, accepted for publication in MNRA

    A Chandra Survey of Quasar Jets: First Results

    Full text link
    We present results from Chandra X-ray imaging and spectroscopy of a flux-limited sample of flat spectrum radio-emitting quasars with jet-like extended structure. Twelve of twenty quasar jets are detected in 5 ks ACIS-S exposures. The quasars without X-ray jets are not significantly different from those in the sample with detected jets except that the extended radio emission is generally fainter. New radio maps are combined with the X-ray images in order to elucidate the relation between radio and X-ray emission in spatially resolved structures. We find a variety of morphologies, including long straight jets and bends up to 90 degrees. All X-ray jets are one-sided although the radio images used for source selection often show lobes opposite the X-ray jets. The FR II X-ray jets can all be interpreted as inverse Compton scattering of cosmic microwave background photons by electrons in large-scale relativistic jets although deeper observations are required to test this interpretation in detail. Applying this interpretation to the jets as a population, we find that the jets would be aligned to within 30 degrees of the line of sight generally, assuming that the bulk Lorentz factor of the jets is 10.Comment: 25 pages with 5 pages of color figures; accepted for publication in the Astrophysical Journal Supplements; higher resolution jpeg images are available at http://space.mit.edu/home/jonathan/jets
    • 

    corecore