45 research outputs found

    Chemical sensor resolution requirements for near-surface measurements of turbulent fluxes

    Get PDF
    Businger and Delany (1990) presented an approach to estimate the sensor resolution required to limit the contribution of the uncertainty in the chemical concentration measurement to uncertainty in the flux measurement to 10 % for eddy covariance, gradient, and relaxed eddy accumulation flux measurement methods. We describe an improvement to their approach to estimate required sensor resolution for the covariance method, and include disjunct eddy covariance. In addition, we provide data to support selection of a form for the dimensionless scalar standard deviation similarity function based on observations of the variance of water vapor fluctuations from recent field experiments. We also redefine the atmospheric parameter of Businger and Delany in a more convenient, dimensionless form. We introduce a chemical parameter based on transfer velocity parameterizations. Finally, we provide examples in which the approach is applied to measurement of carbon dioxide, dimethylsulfide, and hexachlorobenzene fluxes over water. The information provided here will be useful to plan field measurements of atmosphere-surface exchange fluxes of trace gases

    Micrometeorological measurement of hexachlorobenzene and polychlorinated biphenyl compound air-water gas exchange in Lake Superior and comparison to model predictions

    Get PDF
    Air-water exchange fluxes of persistent, bioaccumulative and toxic (PBT) substances are frequently estimated using the Whitman two-film (W2F) method, but micrometeorological flux measurements of these compounds over water are rarely attempted. We measured air-water exchange fluxes of hexachlorobenzene (HCB) and polychlorinated biphenyls (PCBs) on 14 July 2006 in Lake Superior using the modified Bowen ratio (MBR) method. Measured fluxes were compared to estimates using the W2F method, and to estimates from an Internal Boundary Layer Transport and Exchange (IBLTE) model that implements the NOAA COARE bulk flux algorithm and gas transfer model. We reveal an inaccuracy in the estimate of water vapor transfer velocity that is commonly used with the W2F method for PBT flux estimation, and demonstrate the effect of use of an improved estimation method. Flux measurements were conducted at three stations with increasing fetch in offshore flow (15, 30, and 60 km) in southeastern Lake Superior. This sampling strategy enabled comparison of measured and predicted flux, as well as modification in near-surface atmospheric concentration with fetch, using the IBLTE model. Fluxes estimated using the W2F model were compared to fluxes measured by MBR. In five of seven cases in which the MBR flux was significantly greater than zero, concentration increased with fetch at 1-m height, which is qualitatively consistent with the measured volatilization flux. As far as we are aware, these are the first reported ship-based micrometeorological air-water exchange flux measurements of PCBs

    Chemical sensor resolution requirements for near-surface measurements of turbulent fluxes

    Get PDF
    Businger and Delany (1990) presented an approach to estimate the sensor resolution required to limit the contribution of the uncertainty in the chemical concentration measurement to uncertainty in the flux measurement to 10 % for eddy covariance, gradient, and relaxed eddy accumulation flux measurement methods. We describe an improvement to their approach to estimate required sensor resolution for the covariance method, and include disjunct eddy covariance. In addition, we provide data to support selection of a form for the dimensionless scalar standard deviation similarity function based on observations of the variance of water vapor fluctuations from recent field experiments. We also redefine the atmospheric parameter of Businger and Delany in a more convenient, dimensionless form. We introduce a "chemical parameter" based on transfer velocity parameterizations. Finally, we provide examples in which the approach is applied to measurement of carbon dioxide, dimethylsulfide, and hexachlorobenzene fluxes over water. The information provided here will be useful to plan field measurements of atmosphere-surface exchange fluxes of trace gases

    Evaluation of five dry particle deposition parameterizations for incorporation into atmospheric transport models

    Get PDF
    Despite considerable effort to develop mechanistic dry particle deposition parameterizations for atmospheric transport models, current knowledge has been inadequate to propose quantitative measures of the relative performance of available parameterizations. In this study, we evaluated the performance of five dry particle deposition parameterizations developed by Zhang et al. (2001) (Z01), Petroff and Zhang (2010) (PZ10), Kouznetsov and Sofiev (2012) (KS12), Zhang and He (2014) (ZH14), and Zhang and Shao (2014) (ZS14), respectively. The evaluation was performed in three dimensions: model ability to reproduce observed deposition velocities, Vd (accuracy); the influence of imprecision in input parameter values on the modeled Vd (uncertainty); and identification of the most influential parameter(s) (sensitivity). The accuracy of the modeled Vd was evaluated using observations obtained from five land use categories (LUCs): grass, coniferous and deciduous forests, natural water, and ice/snow. To ascertain the uncertainty in modeled Vd, and quantify the influence of imprecision in key model input parameters, a Monte Carlo uncertainty analysis was performed. The Sobol' sensitivity analysis was conducted with the objective to determine the parameter ranking from the most to the least influential. Comparing the normalized mean bias factors (indicators of accuracy), we find that the ZH14 parameterization is the most accurate for all LUCs except for coniferous forest, for which it is second most accurate. From Monte Carlo simulations, the estimated mean normalized uncertainties in the modeled Vd obtained for seven particle sizes (ranging from 0.005 to 2.5 µm) for the five LUCs are 17, 12, 13, 16, and 27 % for the Z01, PZ10, KS12, ZH14, and ZS14 parameterizations, respectively. From the Sobol' sensitivity results, we suggest that the parameter rankings vary by particle size and LUC for a given parameterization. Overall, for dp  =  0.001 to 1.0 µm, friction velocity was one of the three most influential parameters in all parameterizations. For giant particles (dp  =  10 µm), relative humidity was the most influential parameter. Because it is the least complex of the five parameterizations, and it has the greatest accuracy and least uncertainty, we propose that the ZH14 parameterization is currently superior for incorporation into atmospheric transport models

    A semi-Lagrangian view of ozone production tendency in North American outflow in the summers of 2009 and 2010

    Get PDF
    The Pico Mountain Observatory, located at 2225 m a.s.l. in the Azores Islands, was established in 2001 to observe long-range transport from North America to the central North Atlantic. In previous research conducted at the observatory, ozone enhancement (\u3e 55 ppbv) in North American outflows was observed, and efficient ozone production in these outflows was postulated. This study is focused on determining the causes for high d[O3] / d[CO] values (~1 ppbv ppbv−1) observed in the summers of 2009 and 2010. The folded retroplume technique, developed by Owen and Honrath (2009), was applied to combine upwind FLEXPART transport pathways with GEOS-Chem chemical fields. The folded result provides a semi-Lagrangian view of polluted North American outflow in terms of physical properties and chemical processes, including production/loss rate of ozone and NOx produced by lightning and thermal decomposition of peroxy acetyl nitrate (PAN). Two transport events from North America were identified for detailed analysis. High d[O3] / d[CO] was observed in both events, but due to differing transport mechanisms, ozone production tendency differed between the two. A layer of net ozone production was found at 2 km a.s.l. over the Azores in the first event plume, apparently driven by PAN decomposition during subsidence of air mass in the Azores–Bermuda High. In the second event, net ozone loss occurred during transport in the lower free troposphere, yet observed d[O3] / d[CO] was high. We estimate that in both events, CO loss through oxidation contributed significantly to d[O3] / d[CO] enhancement. Thus, it is not appropriate to use CO as a passive tracer of pollution in these events. In general, use of d[O3] / d[CO] as an indicator of net ozone production/loss may be invalid for any situation in which oxidants are elevated. Based on our analysis, use of d[O3] / d[CO] to diagnose ozone enhancement without verifying the assumption of negligible CO loss is not advisable

    A semi-Lagrangian view of ozone production tendency in North American outflow in the summers of 2009 and 2010

    Get PDF
    The Pico Mountain Observatory, located at 2225 m a.s.l. in the Azores Islands, was established in 2001 to observe long-range transport from North America to the central North Atlantic. In previous research conducted at the observatory, ozone enhancement (> 55 ppbv) in North American outflows was observed, and efficient ozone production in these outflows was postulated. This study is focused on determining the causes for high d[O3] / d[CO] values (~1 ppbv ppbv−1) observed in the summers of 2009 and 2010. The folded retroplume technique, developed by Owen and Honrath (2009), was applied to combine upwind FLEXPART transport pathways with GEOS-Chem chemical fields. The folded result provides a semi-Lagrangian view of polluted North American outflow in terms of physical properties and chemical processes, including production/loss rate of ozone and NOx produced by lightning and thermal decomposition of peroxy acetyl nitrate (PAN). Two transport events from North America were identified for detailed analysis. High d[O3] / d[CO] was observed in both events, but due to differing transport mechanisms, ozone production tendency differed between the two. A layer of net ozone production was found at 2 km a.s.l. over the Azores in the first event plume, apparently driven by PAN decomposition during subsidence of air mass in the Azores–Bermuda High. In the second event, net ozone loss occurred during transport in the lower free troposphere, yet observed d[O3] / d[CO] was high. We estimate that in both events, CO loss through oxidation contributed significantly to d[O3] / d[CO] enhancement. Thus, it is not appropriate to use CO as a passive tracer of pollution in these events. In general, use of d[O3] / d[CO] as an indicator of net ozone production/loss may be invalid for any situation in which oxidants are elevated. Based on our analysis, use of d[O3] / d[CO] to diagnose ozone enhancement without verifying the assumption of negligible CO loss is not advisable

    Micrometeorological measurement of hexachlorobenzene and polychlorinated biphenyl compound air-water gas exchange in Lake Superior and comparison to model predictions

    Get PDF
    Air-water exchange fluxes of persistent, bioaccumulative and toxic (PBT) substances are frequently estimated using the Whitman two-film (W2F) method, but micrometeorological flux measurements of these compounds over water are rarely attempted. We measured air-water exchange fluxes of hexachlorobenzene (HCB) and polychlorinated biphenyls (PCBs) on 14 July 2006 in Lake Superior using the modified Bowen ratio (MBR) method. Measured fluxes were compared to estimates using the W2F method, and to estimates from an Internal Boundary Layer Transport and Exchange (IBLTE) model that implements the NOAA COARE bulk flux algorithm and gas transfer model. We reveal an inaccuracy in the estimate of water vapor transfer velocity that is commonly used with the W2F method for PBT flux estimation, and demonstrate the effect of use of an improved estimation method. Flux measurements were conducted at three stations with increasing fetch in offshore flow (15, 30, and 60 km) in southeastern Lake Superior. This sampling strategy enabled comparison of measured and predicted flux, as well as modification in near-surface atmospheric concentration with fetch, using the IBLTE model. Fluxes estimated using the W2F model were compared to fluxes measured by MBR. In five of seven cases in which the MBR flux was significantly greater than zero, concentration increased with fetch at 1-m height, which is qualitatively consistent with the measured volatilization flux. As far as we are aware, these are the first reported ship-based micrometeorological air-water exchange flux measurements of PCBs

    Evaluation of five dry particle deposition parameterizations for incorporation into atmospheric transport models

    No full text
    Despite considerable effort to develop mechanistic dry particle deposition parameterizations for atmospheric transport models, current knowledge has been inadequate to propose quantitative measures of the relative performance of available parameterizations. In this study, we evaluated the performance of five dry particle deposition parameterizations developed by Zhang et al. (2001) (Z01), Petroff and Zhang (2010) (PZ10), Kouznetsov and Sofiev (2012) (KS12), Zhang and He (2014) (ZH14), and Zhang and Shao (2014) (ZS14), respectively. The evaluation was performed in three dimensions: model ability to reproduce observed deposition velocities, Vd (accuracy); the influence of imprecision in input parameter values on the modeled Vd (uncertainty); and identification of the most influential parameter(s) (sensitivity). The accuracy of the modeled Vd was evaluated using observations obtained from five land use categories (LUCs): grass, coniferous and deciduous forests, natural water, and ice/snow. To ascertain the uncertainty in modeled Vd, and quantify the influence of imprecision in key model input parameters, a Monte Carlo uncertainty analysis was performed. The Sobol' sensitivity analysis was conducted with the objective to determine the parameter ranking from the most to the least influential. Comparing the normalized mean bias factors (indicators of accuracy), we find that the ZH14 parameterization is the most accurate for all LUCs except for coniferous forest, for which it is second most accurate. From Monte Carlo simulations, the estimated mean normalized uncertainties in the modeled Vd obtained for seven particle sizes (ranging from 0.005 to 2.5 µm) for the five LUCs are 17, 12, 13, 16, and 27 % for the Z01, PZ10, KS12, ZH14, and ZS14 parameterizations, respectively. From the Sobol' sensitivity results, we suggest that the parameter rankings vary by particle size and LUC for a given parameterization. Overall, for dp  =  0.001 to 1.0 µm, friction velocity was one of the three most influential parameters in all parameterizations. For giant particles (dp  =  10 µm), relative humidity was the most influential parameter. Because it is the least complex of the five parameterizations, and it has the greatest accuracy and least uncertainty, we propose that the ZH14 parameterization is currently superior for incorporation into atmospheric transport models

    Addition of hydrogen sulfide to juglone

    No full text
    Evidence of the addition of hydrogen sulfide to 5-hydroxy-1,4-naphthoquinone (juglone) in aqueous solution was obtained by nuclear magnetic resonance spectrometry (NMR), electron paramagnetic resonance spectrometry (EPR), UV-visible absorbance spectroscopy, and kinetic measurements. Although numerous addition reactions of thiolated alkane and aromatic compounds to quinones have been previously reported, this study indicates that inorganic forms of S(-II) act as nucleophiles and electrophiles in addition reactions to the α,β-conjugated system of the quinone. The results obtained are consistent with competing Michael and radical addition reactions, with radical addition favored with increasing pH. The simplest structure that simulated the NMR spectrum was a sulfur molecule containing sulfur bonded between two juglone molecules at C-2 or C-3,while EPR measurements of aqueous reaction solutions indicated the presence of a stable semiquinone that contained a sulfur substituent at C-2 or C-3. Quinones are present in trace amounts in natural organic matter, and the addition of S(-II) has important implications with respect to transport and transformation of a variety of compounds that react with natural organic matter

    Synthetic organic toxicants in Lake Superior

    No full text
    Numerous synthetic organic toxicants have been reported in Lake Superior in the past quarter century although relatively few industrial centers are located on its shores. The chemicals enter the lake primarily through atmospheric deposition via transport from regional and distant sources. This contribution discusses research issues regarding the processes by which the chemicals enter and exit the lake, their in-lake cycling and bioaccumulation, and recently reported potential toxicological effects. Research issues that remain for historically important synthetic organic toxicants are discussed as well as those of emerging chemicals of concern. Although concentrations of some historically important toxicants are decreasing in Lake Superior\u27s waters through volatilization and sedimentation and burial, abiotic and biotic in-lake cycling opens routes of entry into the lake\u27s lower food web, contributing to concentrations in fish that warrant consumption advisories in certain cases. Concentrations of some non-polar emerging chemicals of concern that are increasing in production (such as polybrominated diphenyl ethers) can be expected to increase in the lake and be subject to similar processes occurring to historically important persistent organic pollutants unless regulatory intervention leads to decreasing atmospheric emissions. Other emerging chemicals of concern await measurement in Lake Superior. Our ability to understand the fate and effects of synthetic organic toxicants on the Lake Superior ecosystem, whether they are \u27legacy\u27 chemicals or emerging chemicals of concern, is limited by the availability of techniques to determine physical-chemical properties, concentrations, fluxes, bioaccumulation pathways and rates, and mechanisms of toxicity. Future research on synthetic organic toxicants in Lake Superior relies on advances in development of these techniques. Policy decisions must take into account the variety factors that lead to the presence of the chemicals in the lake and their toxic effects
    corecore