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Abstract. Despite considerable effort to develop mechanis-
tic dry particle deposition parameterizations for atmospheric
transport models, current knowledge has been inadequate to
propose quantitative measures of the relative performance
of available parameterizations. In this study, we evaluated
the performance of five dry particle deposition parameter-
izations developed by Zhang et al. (2001) (“Z01”), Petroff
and Zhang (2010) (“PZ10”), Kouznetsov and Sofiev (2012)
(“KS12”), Zhang and He (2014) (“ZH14”), and Zhang and
Shao (2014) (“ZS14”), respectively. The evaluation was per-
formed in three dimensions: model ability to reproduce ob-
served deposition velocities, Vd (accuracy); the influence of
imprecision in input parameter values on the modeled Vd
(uncertainty); and identification of the most influential pa-
rameter(s) (sensitivity). The accuracy of the modeled Vd was
evaluated using observations obtained from five land use cat-
egories (LUCs): grass, coniferous and deciduous forests, nat-
ural water, and ice/snow. To ascertain the uncertainty in mod-
eled Vd, and quantify the influence of imprecision in key
model input parameters, a Monte Carlo uncertainty analy-
sis was performed. The Sobol’ sensitivity analysis was con-
ducted with the objective to determine the parameter ranking
from the most to the least influential. Comparing the normal-
ized mean bias factors (indicators of accuracy), we find that
the ZH14 parameterization is the most accurate for all LUCs
except for coniferous forest, for which it is second most accu-
rate. From Monte Carlo simulations, the estimated mean nor-
malized uncertainties in the modeled Vd obtained for seven
particle sizes (ranging from 0.005 to 2.5 µm) for the five
LUCs are 17, 12, 13, 16, and 27 % for the Z01, PZ10, KS12,
ZH14, and ZS14 parameterizations, respectively. From the
Sobol’ sensitivity results, we suggest that the parameter rank-
ings vary by particle size and LUC for a given parameteriza-

tion. Overall, for dp= 0.001 to 1.0 µm, friction velocity was
one of the three most influential parameters in all parameter-
izations. For giant particles (dp= 10 µm), relative humidity
was the most influential parameter. Because it is the least
complex of the five parameterizations, and it has the great-
est accuracy and least uncertainty, we propose that the ZH14
parameterization is currently superior for incorporation into
atmospheric transport models.

1 Introduction

Dry deposition is a complex process that is influenced by
the chemical properties of aerosols and their sources, me-
teorological conditions, and surface characteristic features.
The transference of particles from the atmosphere to the
Earth’s surface is controlled by forcings such as frictional
drag and terrain-induced flow modification (Giorgi, 1986;
Stull, 2012). Understanding the processes and factors con-
trolling dry deposition is necessary to estimate the residence
time of atmospheric particles, which governs their atmo-
spheric transport distance, transboundary fluxes, and poten-
tial climate effects (IPCC, 2001; Nemitz et al., 2002; Pryor
et al., 2008). An accurate estimation of dry deposition is also
needed to quantify the atmospheric loads of particles contain-
ing sulfate, nitrate, and ammonium that contribute to acidifi-
cation and eutrophication of ecosystems, toxic elements such
as Pb, Zn, and Cd, and base cations such as Na+, K+, Ca2+,
and Mg2+ that alter the nutrient cycling in soil (Ruijgrok et
al., 1995; Petroff et al., 2008a).

Over the last three decades, several indirect and direct
methods were developed to measure dry particle deposition
(hereinafter referred to as dry deposition) flux to ecosystems
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(McMahon and Denison, 1979; Sehmel, 1980; Gallagher et
al., 1997; Zhang and Vet, 2006; Pryor et al., 2008). Dry de-
position velocity Vd at height z is defined as the ratio of the
total flux F(z) divided by the particle concentration at the
same height C(z) (Pryor et al., 2013; Rannik et al., 2016)
and is mathematically expressed as

Vd =−
F(z)

C(z)
. (1)

One of the major limitations of direct flux measurement is
limited spatial coverage because the measurement stations
are confined to only a limited number of sites (Nemitz et al.,
2002). The application of spatially and temporally resolved
3-D atmospheric transport models, from regional to global
scale, can produce estimates of dry deposition fluxes for a
suite of atmospheric species over various natural surfaces
such as bare soil, grass, forest canopies, water, and ice/snow.
To predict the dry deposition fluxes using atmospheric trans-
port models, a parameterization/scheme that can adequately
account for the major physical processes of particle deposi-
tion (e.g., turbulent diffusion, gravitational settling, intercep-
tion, impaction, and Brownian diffusion) must be embedded
in the host model.

Many dry deposition models have been developed for sci-
entific research and operational purposes (see model review
by Petroff et al., 2008a). Significant advances in understand-
ing the governing mechanisms of dry deposition were made
through use of experimental deposition data on walls of verti-
cal pipes in the developments of size-resolved parameteriza-
tions for atmospheric particle deposition on ground surface
(Muyshondt et al., 1996; Noll et al., 2001; Feng, 2008). In
mechanistic or process-based dry deposition models, an elec-
trical resistance-based approach is widely used to parameter-
ize the dry deposition velocity (Venkatram and Pleim, 1999).
In this approach, dry deposition occurs via two parallel path-
ways: turbulent diffusion (expressed as aerodynamic resis-
tance) and gravitational settling (expressed as resistance due
to gravitation). In addition, particle collection by surfaces
via Brownian diffusion, interception, and impaction is repre-
sented using separate surface resistance terms (Slinn, 1982;
Hicks et al., 1987; Wesely and Hicks, 2000; Zhang et al.,
2001; Seinfeld and Pandis, 2006; Petroff and Zhang, 2010;
Zhang and He, 2014). In all these models, the conventional
resistance-based approach does not consider surface inhomo-
geneity or terrain complexity (i.e., deposition over flat ter-
rain is assumed). However, Hicks (2008) argued about the
importance of considering terrain complexity in dry deposi-
tion models because the assumption of surface homogeneity
in existing deposition models limits the accuracy of pollu-
tant load estimation in sensitive ecosystems that are located
in complex terrain (e.g., on mountaintops or hills).

Despite considerable efforts in developing dry deposition
parameterizations of varying complexity, there remain con-
siderable gaps in systematic performance evaluation of ex-
isting schemes with reliable field measurements. We note

that the evaluation of dry deposition parameterizations with
field measurements is very limited and not up to date. Van
Aalst (1986) evaluated the performance of six dry deposi-
tion parameterizations against field measurements and re-
ported large discrepancies in terms of the modeled depo-
sition velocities. He reported that over water surfaces the
modeled deposition velocities for 1.0 µm particles by the
Williams (1982) scheme were factors of 10 to 50 higher than
those predicted by the Sehmel and Hodgson (1978) scheme.
For forest canopy, the Wiman and Ågren (1985) model over-
predicted the deposition velocities of the Slinn (1982) model
by a factor of 5. In a recent study, Hicks et al. (2016)
compared five deposition models with measurements con-
ducted over forests. They found that for particle sizes less
than approximately 0.2 µm, the modeled deposition veloci-
ties agreed fairly well with measured velocities. The largest
discrepancy was observed for particle sizes of 0.3 to approx-
imately 5.0 µm. Studies also suggest that in many dry deposi-
tion parameterizations, the largest uncertainty exists for 0.1–
1.0 µm particles because of the differing treatments of some
key particle deposition processes such as Brownian diffusion
(Van Aalst, 1986; Petroff and Zhang, 2010; Zhang and Shao,
2014).

Uncertainty in modeled dry deposition velocities is an area
that requires a thorough investigation. Only a few studies
have been conducted in quantifying the uncertainties in dry
deposition parameterizations. Ruijgrok (1992) performed an
uncertainty evaluation of the Slinn (1982) model by assess-
ing the variabilities in nine input parameters to the model out-
puts. Using Slinn’s model, Gould and Davidson (1992) de-
termined the influence of uncertainties in the size of the col-
lection elements, roughness length, canopy wind profile, and
wind speed on the modeled deposition velocities. As far as
we know, a detailed uncertainty analysis to address the influ-
ence of varying particle size, meteorological conditions, and
surface features has not been performed on existing dry de-
position parameterizations. The results from an uncertainty
analysis could be used as one of the model’s performance
indicators and help guide the modeling community to ade-
quately account for uncertainties in the modeled deposition
fluxes of pollutants to ecosystems.

Sensitivity analysis is often performed to determine the
most influential parameters to the model outputs. Typically,
a dry deposition model incorporates a large number of in-
put parameters, which are subject to variability. In addition
to identifying the most sensitive parameter(s), a sensitivity
analysis can provide important insight as to the processes that
control the overall deposition process and identify those that
may require further improvement. However, a detailed sen-
sitivity test that encompasses exploring the entire parameter
spaces of the input parameters of a dry deposition parameter-
ization has not yet been performed. Some researchers con-
ducted one-at-a-time (OAT) sensitivity analysis (SA) (Ruij-
grok et al., 1997; Zhang et al., 2001) of dry deposition mod-
els. In OAT-SA, the effect of varying one model input param-

Geosci. Model Dev., 10, 3861–3888, 2017 www.geosci-model-dev.net/10/3861/2017/



T. R. Khan and J. A. Perlinger: Evaluation of five dry particle deposition parameterizations 3863

eter is tested at a time while keeping all others fixed (Saltelli
and Annoni, 2010). Because in reality the variabilities in a set
of model input parameters are expected to occur simultane-
ously, an OAT-SA is not a useful tool to determine the most
influential parameter(s) in the deposition models. Rather, a
variance-based global sensitivity test approach is needed. In
global sensitivity analysis, the potential effects from simulta-
neous variabilities of model input parameters over their plau-
sible range is considered (Lilburne and Tarantola, 2009).

In the present study, five dry deposition parameterizations,
developed by Zhang et al. (2001), Petroff and Zhang (2010),
Kouznetsov and Sofiev (2012), Zhang and He (2014), and
Zhang and Shao (2014), are selected for an intercomparison
of performance in terms of accuracy, uncertainty, and sen-
sitivity. Throughout this paper, these models are referred to
as Z01, PZ10, KS12, ZH14, and ZS14, respectively. The ob-
jectives of this study are threefold. The first objective is to
evaluate the accuracy of five dry deposition parameteriza-
tions using measured dry deposition velocities obtained from
field observations. Data of measured deposition velocities
were collected from the literature, which was comprised of
measurements conducted over land use categories (LUCs) in-
cluding grass, coniferous and deciduous forests, natural wa-
ter, and ice/snow. The second objective is to perform an un-
certainty analysis of the modeled dry deposition velocities
related to imprecision in model input parameter values. The
third objective is to quantify the most influential parameters
in the modeled dry deposition velocities by applying a global
variance-based sensitivity analysis.

2 Background

The five dry deposition schemes used in this paper are de-
scribed briefly below. For each scheme, the major expres-
sions/equations used to compute the dry deposition velocities
are provided.

2.1 Zhang et al. (2001) (Z01) scheme

The Z01 scheme estimates dry deposition velocity as a func-
tion of particle size and density, meteorological variables,
and surface properties. In the Z01 scheme, the dry deposi-
tion velocity (Vd) is expressed as

Vd = Vg+
1

Ra+Rs
, (2)

where Vg is the gravitational settling velocity, Ra is the aero-
dynamic resistance above the canopy, and Rs is the surface
resistance. The expression for gravitational settling velocity
(Vg) is given as

Vg =
ρd2

pgC

18ηV
, (3)

where ρ is the dry density of the particle, dp is the parti-
cle aerodynamic diameter, g is the gravitational accelera-

tion, C is the Cunningham correction factor, and ηV is the
temperature-dependent viscosity coefficient of air. The cor-
rection factor C is applied to account for the molecular struc-
ture of the air and is expressed as

C = 1+
2λ
dp

(
1.257+ 0.4e−

0.55dp
λ

)
, (4)

where λ is the mean free path of air molecules.
The aerodynamic resistance (Ra) is calculated as

Ra =
ln
(
zR
z0

)
−ψH

κu∗
, (5)

where zR is the reference height where Vd is typically com-
puted, z0 is the roughness height, κ is the von Kármán
constant, u∗ is the friction velocity, and ψH is the sta-
bility function for heat. The expression for ψH is ψH =
2ln

[
0.5(1+ (1− 16x)0.5

]
when x ∈ [−2;0], andψH =−5x

when x ∈ [0;1]. Here, x = z/LO, where z is the measure-
ment height and LO is the Monin–Obukhov length.

The surface resistance term, Rs in Eq. (2), is a function
of particle collection efficiencies due to Brownian diffusion
(EB), impaction (EIM), and interception (EIN). Accordingly,
Rs is parameterized as

Rs =
1

ε0u∗ (EB+EIM+EIN)R1
, (6)

where ε0 is an empirical constant and its value is taken as
3 for all LUCs, and R1 is the correction factor for parti-
cle rebound, which is included to modify the collection ef-
ficiencies at the surface. R1 is parameterized as a function of
Stokes number (St) as

R1 = exp
(
−St−0.5

)
. (7)

The parameterizations forEB,EIM, andEIN are expressed by
Eqs. (8), (10), and (14), respectively. The particle collection
efficiency (EB) is parameterized as a function of Schmidt
number (Sc) as

EB = Sc
−γ , (8)

where Sc is the ratio of kinematic viscosity of air (ν) to
the particle Brownian diffusivity (D). γ is a LUC-dependent
variable, and the typical values of γ range from 0.54 to 0.56
for rough surfaces and from 0.50 to 0.56 for smooth surfaces.
Brownian diffusivity (D) is calculated as

D =
CkBT

3πµdp
, (9)

where C is the Cunningham correction factor as expressed
by Eq. (4), kB is Boltzmann’s constant (1.38× 10−23 J K−1),
and µ is the dynamic viscosity of air at temperature T .
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For smooth surfaces, particle collection efficiency by im-
paction (EIM) is parameterized as

EIM = 10−
3
St . (10)

In addition, for rough surfaces,

EIM =

(
St

α+ St

)β
, (11)

where α and β are constants; values of α are LUC dependent,
and β is taken as 2. In Eqs. (10)–(11), the Stokes number (St)
is expressed as

St =
Vgu∗

gA
(for vegetative surfaces), (12)

St =
Vgu

2
∗

ν
(for smooth surfaces), (13)

where A is the characteristic radius of the surface collector
elements. The values of A are given for different LUCs for
various seasons by Zhang et al. (2001).

Collection efficiency by interception (EIN) is calculated as

EIN =
1
2

(
dp

A

)2

. (14)

Growth of particles under humid conditions is considered in
the Z01 scheme by replacing the dp with a wet particle diam-
eter (dw), which is calculated as

dw =

 C1

(
dp
2

)C2

C3

(
dp
2

)C4
− logRH

+

(
dp

2

)C3


1
3

, (15)

where C1, C2, C3, andC4 are the empirical constants (values
given in Table 1 of Zhang et al., 2001), and RH is the relative
humidity.

2.2 Petroff and Zhang (2010) (PZ10) scheme

Petroff and Zhang (2010) parameterized dry deposition ve-
locity using an expression similar to Eq. (2) with some im-
provements of the surface resistance and collection efficiency
terms. In the PZ10 scheme, the effect of gravity and drift
forces (e.g., phoretic effects) was taken into account by in-
troducing the term drift velocity (Vdrift). Thus, dry deposition
velocity (Vd) at a reference height (zR) is given as

Vd = Vdrift+
1

Ra+Rs
. (16)

Here, the drift velocity Vdrift is equal to the sum of gravita-
tional settling velocity and phoretic velocity, and the expres-
sion of Vdrift is

Vdrift = Vg+Vphor. (17)

Vg is calculated using Eq. (3). The LUC-dependent values of
Vphor were given by Petroff and Zhang (2010).

Surface resistance (Rs) is commonly expressed as an
inverse of the surface deposition velocity, Vds (i.e., Rs =

1/Vds). In the PZ10 scheme, Vds is parameterized as

Vds

u∗
= Eg

1+
[
Q
Qg
−
α
2

]
tanh(η)
η

1+
[
Q
Qg
+α

]
tanh(η)
η

. (18)

The parameters (e.g., Q, Qg, α, and η) used in Eq. (18)
are dependent on the aerodynamic and surface characteris-
tic features. The parameterization of the total particle collec-
tion efficiency on the ground below the vegetation (Eg) has
two components: (i) collection by Brownian diffusion (Egb)

and (ii) collection by turbulent impaction (Egt). In the PZ10
scheme, formulation of Egb is expressed as

Egb =
Sc−

2
3

14.5

[
1
6

ln
(1+F)2

1−F +F 2 +
1
√

3
Arctan

2F − 1
√

3

+
π

6
√

3

]−1

, (19)

where F is a function of the Schmidt number (Sc) and is
expressed as F = Sc

1
3 /2.9.

Collection efficiency by turbulent impaction, Egt, is a
function of dimensionless particle relaxation time (τ+ph) and
a coefficient CIT (taken as 0.14). In the PZ10 scheme, Egt is
parameterized as

Egt = 2.5× 10−3CITτ
+2
ph . (20)

τ+ph is calculated as τ+ph = τpu
2
f /ν. The local friction velocity

(uf) is expressed as

uf = u∗e
−α, (21)

where α is the aerodynamic extinction coefficient and is ex-
pressed as

α =

(
kxLAI

12κ2
(
1− d

h

)2
) 1

3

φ
2
3
m

(
h− d

LO

)
. (22)

In Eq. (20), kx is the inclination coefficient of canopy ele-
ments, LAI is the leaf area index, d is the zero-plane dis-
placement height, h is the height of the canopy, LO is the
Monin–Obukhov length, and φm is the non-dimensional sta-
bility function for momentum. The expressions for φm is
φm(x)= (1− 16x)−

1
4 when x ∈ [−2 : 0] and φm(x)= (1+

5x)−
1
4 when x ∈ [0 : 1].

In Eq. (18), the non-dimensional timescale parameter, Q,
is defined as the ratio the turbulent transport timescale to the
vegetation collection timescale. The magnitude of Q can be
used to characterize the dominant mechanism of the vertical
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transport of particles to the surface. For particle deposition
over a canopy, Q� 1 describes a condition in which ho-
mogeneous concentration of Aitken and accumulation mode
particles prevails throughout the canopy. This condition oc-
curs when turbulent mixing is very efficient and transfer of
particles is limited by the collection efficiency on leaves. In
contrast, Q� 1 characterizes a situation in which an inho-
mogeneous particle concentration within the canopy prevails,
which is typical for coarse mode particles. Under such con-
ditions, efficient collection of particles by leaves takes place,
and transfer to the surface is usually limited by the turbulent
transport.

In the PZ10 scheme, Q and Qg are parameterized using
Eqs. (23) and (24), respectively:

Q=
LAIETh

lmp(h)
, (23)

Qg =
Egh

lmp (h)
, (24)

where ET is the total particle collection efficiency by vari-
ous physical processes and lmp(h) is the mixing height for
the particles. The mixing height for particles, lmp(h), is cal-
culated as

lmp (h)=
κ(h− d)

φh

(
h−d
LO

) , (25)

where φh is the stability function for heat and expressed as
φh(x)= (1− 16x)−

1
2 when x ∈ [−2;0] and φh(x)= 1+ 5x

when x ∈ [0;1].
The total collection efficiency (ET) is expressed as

ET =
Uh

u∗
(EB+EIN+EIM)+EIT, (26)

where Uh is the horizontal wind speed at canopy height h,
and EB, EIN, EIM, and EIT are the collection efficiencies
by Brownian diffusion, interception, impaction, and turbu-
lent impaction, respectively. Note that the physical meanings
of the first three efficiency terms are similar to those of the
Z01 scheme. However, the parameterizations of these terms
differ from the Z01 scheme. The term describing turbulent
impaction efficiency (EIT) is absent in the Z01 scheme.

Parameterizations of deposition efficiencies (i.e., EB, EIN,
EIM, and EIT) are given below according to the PZ10
scheme.

Particle collection efficiency by Brownian diffusion (EB)

is given by

EB = CBSc
−

2
3 Re
−

1
2

h . (27)

In Eq. (27), CB is the LUC-dependent coefficient; Reh is the
Reynolds number of the horizontal air flow calculated at top
of the canopy height h as Reh =

UhL
ν

. Here, L is the LUC-
dependent characteristic length of the canopy obstacle ele-
ments.

Particle collection efficiency by interception (EIN):

EIN = CB
dp

L
(for needle-like obstacle), (28)

EIN = CB
dp

L

[
2+ ln

4L
dp

]
(for leaf of plane obstacle). (29)

In Eqs. (28)–(29), CB is the LUC-dependent coefficient.
Particle collection efficiency by impaction (EIM):

EIM = CIM

(
Sth

Sth+βIM

)2

. (30)

In Eq. (30), Sth is the Stokes number on top of the canopy,
which is calculated as Sth =

τpUh
L

. τp is the particle relax-
ation time calculated as τp = Vg/g. CIM and βIM are LUC-
dependent coefficients.

Particle collection efficiency by turbulent impaction (EIT)

is parameterized as

EIT = 2.5× 10−3CITτ
+2
ph if τ+ph ≤ 20, (31)

EIT = CIT if τ+ph ≥ 20. (32)

In Eqs. (31)–(32), the dimensionless particle relaxation time
is calculated as τ+ph = τpu

2
∗/ν.

The term η in Eq. (18) is taken as

η =

√
α2

4
+Q. (33)

For non-vegetative surfaces, such as bare soil, natural water
and ice/snow, a modified form of Eq. (16) is used in the form
of Eq. (34), which is expressed as

Vd = Vdrift+
1

Ra+ 1/(Egbu∗)
. (34)

2.3 Kouznetsov and Sofiev (2012) (KS12) scheme

Kouznetsov and Sofiev (2012) developed a dry deposition
parameterization by extending the conventional resistance-
based analogy using the exact solution of the steady-state
equation for aerosol flux. According to the KS12 scheme,
for rough surfaces, dry deposition velocity (Vd) is computed
as

Vd = Vdiff+Vint+Vimp+Vg, (35)

where Vdiff, Vint, Vimp, and Vg are the velocities for the de-
positing particles due to Brownian diffusion, interception,
impaction, and gravitational settling, respectively. The pa-
rameterizations for these terms are provided below.
Vdiff was parameterized as

Vdiff = 2u∗Re
−

1
2
∗ Sc−

2
3 , (36)
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where Re∗ is the canopy Reynolds number given by

Re∗ =
u∗a

ν
, (37)

where a is the length scale for different LUCs.
Vint is parameterized as

Vint = u∗Re
1
2
∗

(
dp

a

)2

. (38)

Vimp is parameterized as

Vimp =
2u2
∗

Utop
ηimp

(
St −

u∗

Utop
Re
−

1
2
∗

)
, (39)

where Utop is the mean horizontal wind speed on top of
the canopy, ηimp is the particle collection efficiency due to
impaction, and St is the Stokes number. Kouznetsov and
Sofiev (2012) used Eq. (40) to parameterize u∗

Utop
as

u∗

Utop
=min

[
(Cs+CRLAI/2)2,

(
u∗

Utop

)
max

]
, (40)

where Cs = 0.003, CR = 0.3, and
(
u∗
Utop

)
max
= 0.3 are con-

stants.
The Stokes number St is expressed as

St =
τpu∗

a
, (41)

where τp is the particle relaxation time calculated as τp =

Vg/g.
The expression for ηimp is given as

ηimp = exp
{
−0.1

Ste− 0.15
−

1
√
Ste− 0.15

}
if Ste > 0.15, (42)

ηimp = 0 if Ste ≤ 0.15, (43)

where Ste is the effective Stokes number calculated as

Ste = St −Re
−

1
2

c , (44)

where Rec is the critical Reynolds number calculated as

Rec =

(
Utop

u∗

)2

Re∗. (45)

The term Vg in Eq. (35) is parameterized using Eq. (3).
Note that, in the KS12 scheme, the parameterization of Vd

over smooth surfaces requires solving the universal veloc-
ity profiles (either numerically or analytically) described by
Kouznetsov and Sofiev (2012). We exclude the details of the
solution procedure in this paper. We used the analytical solu-
tions of the velocity profile obtained from the authors of the
KS12 scheme through personal communication.

2.4 Zhang and He (2014) (ZH14) scheme

Zhang and He (2014) developed an empirical resistance-
based parameterization for dry deposition by modifying the
Z01 scheme. The overall structure of the ZH14 scheme is
similar to that of the Z01 scheme (i.e., Vd is calculated us-
ing Eq. 2). In the ZH14 scheme, the parameterizations of Ra
and Rg are similar to those of the Z01 scheme. However,
in the ZH14 scheme, parameterizations for the surface resis-
tance termRs were modified for three bulk particle sizes (i.e.,
PM2.5, PM2.5–10, and PM10+). Recalling Rs = 1/Vds, the pa-
rameterizations of Vds are given below.

For particle sizes less than or equal to 2.5 µm (PM2.5), Vds
is expressed as

Vds(PM2.5) = a1u∗, (46)

where a1 is an empirical constant derived by regression anal-
ysis. Values of a1 are given by Zhang and He (2014) for five
groups of 26 LUCs.

For particle sizes between 2.5 and 10 µm (PM2.5–10), Vds
is expressed as

Vds(PM2.5–10) =
(
b1u∗+ b2u

2
∗+ b3u

3
∗

)
e
k1
(

LAI
LAImax−1

)
, (47)

where b1, b2, and b3 are LUC-dependent constants, LAImax
is the maximum leaf area index for a given LUC, and k1 is a
constant, which is a function of u∗, and expressed as

k1= c1u∗+ c2u
2
∗+ c3u

3
∗, (48)

where c1, c2, and c3 are the LUC-dependent constants.
For particle sizes larger than 10 µm (PM10+), Vds is ex-

pressed as

Vds(PM10+) =
(
d1u∗+ d2u

2
∗+ d3u

3
∗

)
e
k2
(

LAI
LAImax−1

)
, (49)

where d1, d2, and d3 are the LUC-dependent constants, and
LAImax is the maximum leaf area index for a given LUC. The
parameter k2 is a constant, which is a function of u∗, and is
expressed as

k2= f1u∗+ f2u
2
∗+ f3u

3
∗, (50)

where f1, f2, and f3 are the LUC-dependent constants.

2.5 Zhang and Shao (2014) (ZS14) scheme

Zhang and Shao (2014) used an analytical solution of the
steady-state flux equation to derive an expression to compute
dry deposition velocity Vd as

Vd =

Rg+
Rs−Rg

exp
(
Ra
Rg

)
−1

. (51)
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For neutral atmospheric stability conditions, the parameter-
izations of Ra for rough and smooth surfaces are given in
Eqs. (52) and (53), respectively:

Ra =
ScT

κu∗
ln
(
z− d

hc− d

)
, (rough surfaces) (52)

Ra =
B1ScT

κu∗
ln
(
z

z0

)
, (smooth surfaces), (53)

where B1 is an empirical constant (0.45), and ScT is the tur-
bulent Schmidt number expressed as

ScT =

(
1+

α2V 2
g

u2
∗

)
, (54)

where α is a dimensionless coefficient taken as 1.
The gravitational resistance term Rg is calculated as Rg =

1/Vg. The parameterization of the surface resistance term Rs
is given by Zhang and Shao (2014) as follows:

Rs =

{
RVdm

[
E

Cd

τc

τ
+

(
1+

τc

τ

)
Sc−1

+ 10
−3
T
+

p,δ

]

+Vg,w

}−1

, (55)

where R = exp(−b
√
St), and b is an empirical constant, E

is the total collection efficiency, Cd is the drag partition co-
efficient, Sc is the Schmidt number, T +p,δ is the dimension-
less particle relaxation time near the surface, and Vg,w is the
gravitational settling velocity of particle after humidity cor-
rection. τc

τ
is the ratio of the drag on the roof of the roughness

element (τc) to the total shear stress (τ ) and is calculated as

τc

τ
=

βλe

1+βλe
, (56)

where β is the ratio of the pressure-drag coefficient to
friction-drag coefficient, and λe is the effective frontal area
index. The parameter λe is a function of frontal area index or
roughness density (λ), and plane area index (η). The expres-
sion of λe is

λe =
λ

(1− η)c2
exp

(
−

c1λ

(1− η)c2

)
, (57)

where c1 = 6 and c2 = 0.1.
Equation (56) is used to compute T +p,δ as

T +p,δ =
Tp,δu

2
∗

ν
, (58)

where Tp,δ is the particle relaxation time near the surface
(Tp,δ = Vg/g).
Vdm is calculated using two separate expressions for rough

and smooth surfaces, as expressed in Eqs. (59) and (60), re-
spectively:

Vdm =
u∗

uahc
(for rough surfaces), (59)

where ua is the horizontal air speed and hc is the height of
the roughness element.

Vdm = B2u∗ (for smooth surfaces), (60)

where B2 is an empirical constant taken as 3.
In Eq. (55), the total collection efficiency (E) is com-

prised of collection efficiencies by Brownian diffusion (EB),
impaction (EIM), and interception (EIN). The parameteriza-
tions for each of these three terms are given below:

EB = CBSc
−

2
3 RenB−1, (61)

where CB and nB are empirical parameter functions of flow
regimes and are given by Zhang and Shao (2014).

EIM =

(
St

0.6+ St

)2

, (62)

where St is the Stokes number and is expressed as St =
τpu∗/dc. Here, dc is the diameter of the surface collection
element. Values of dc are given by Zhang and Shao (2014)
for various surfaces.

EIN = Ainu∗10−St
2dp,w

dc
, (63)

whereAin is a surface-dependent micro-roughness character-
istic element, and dp,w is the wet diameter of the particle.

3 Methods

3.1 An evaluation of the dry deposition
parameterizations

To assess the accuracy of the five parameterizations, the mod-
eled dry deposition velocities were compared with field mea-
surements from both rough and smooth surfaces. The mea-
surement studies conducted on various natural surfaces were
collected from the literature. More specifically, the studies
cited in the review article on particle flux measurements
by Pryor et al. (2008) were collected to acquire the meta-
data on particle deposition. The availability of the measured
and/or reported parameters (e.g., particle size and density, air
temperature, relative humidity, horizontal wind speed, fric-
tion velocity, atmospheric stability parameter, canopy height,
roughness height, zero-plane displacement height, and leaf
area index) from these measurement studies was thoroughly
investigated and compiled. It was found that many (approx-
imately 50 %) of the studies cited by Pryor et al. (2008) did
not report most of the aforementioned parameters necessary
to run the parameterizations to perform a valid comparison
between the model output and measurements. To reduce un-
certainty, those studies were excluded from the parameteriza-
tion accuracy evaluation. In addition, a literature search was
performed in Web of Science® to find measurement studies

www.geosci-model-dev.net/10/3861/2017/ Geosci. Model Dev., 10, 3861–3888, 2017
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Figure 1. Global distribution of dry deposition measurement locations (listed in Table 1) used to evaluate the Z01, PZ10, KS12, ZH14, and
ZS14 parameterizations. Note that for multiple measurement campaigns conducted in one location, only one data point is shown. Two wind
tunnel studies on water surfaces are not shown.

published after 2008, and those studies were thoroughly as-
sessed to determine the availability of required input param-
eters to run the dry deposition models. Finally, 29 measure-
ment studies covering five LUCs were selected to evaluate
the accuracy of the five parameterizations. The five LUCs
include grass, deciduous and coniferous forests (rough sur-
faces), and natural water and ice/snow (smooth surfaces). Ta-
ble 1 summarizes information related to sampling location,
latitude, longitude, elevation above mean sea level (AMSL),
sampling periods, and particle sizes reported in the measure-
ment studies. The global spatial distribution of these mea-
surement studies is shown in Fig. 1 according to the five
LUCs.

Measurements conducted over grass by Wesely et
al. (1977), Neumann and den Hartog (1985), Allen et
al. (1991), Nemitz et al. (2002), and Vong et al. (2004)
were used to evaluate the performance of the five param-
eterizations. For coniferous forest, modeled deposition ve-
locities were compared with measurements from Lamaud
et al. (1994), Wyzers and Duyzer (1996), Gallagher et
al. (1997), Ruijgrok et al. (1997), Buzorius et al. (2000), Ran-
nik et al. (2000), Gaman et al. (2004), Pryor et al. (2007), and
Grönholm et al. (2009). Experiments conducted over decid-
uous forest are limited, and only three studies (Wesely et al.,
1983; Pryor, 2006; Matsuda et al., 2010) were used in the
present paper.

To evaluate the performance of the parameterizations over
water surfaces, studies by Möller and Schumann (1970),
Sehmel et al. (1974), Zufall et al. (1998), and Caffrey et

al. (1998) were used. We note that the studies by Möller
and Schumann (1970) and Sehmel et al. (1974) were con-
ducted in the wind tunnels, and thus the observed deposition
does not necessarily reflect deposition under natural condi-
tions. Particle deposition measurements on ice/snow pack
were collected from eight studies: Ibrahim et al. (1983),
Duan et al. (1988), Nilsson and Rannik (2001), Gronlund
et al. (2002), Contini et al. (2010), Held et al. (2011a, b),
and Donateo and Contini (2014). The parameterizations were
fed using reported values of particle properties (diameter and
density), meteorological conditions (stability parameter, tem-
perature, wind speed, etc.), and surface properties (canopy
height, roughness length, leaf area index, etc.). However, rea-
sonable values of the missing parameters were used when
needed.

In the present study, the accuracy of the dry deposition
parameterizations was evaluated using the normalized mean
bias factor (BNMBF). The BNMBF provides a statistically ro-
bust and unbiased symmetric measure of the factor by which
the modeled dry deposition velocities differ from the mea-
sured ones, and the sense of that factor (i.e., the positive and
negative values imply the overprediction and underprediction
by models, respectively). The interpretation of the BNMBF is
simple (i.e., average amount by which the ratio of modeled
and measured quantities differs from unity), and it avoids any
inflation that may be caused by low values of measured quan-
tities (Yu et al., 2006).

To quantify the disagreement between the modeled and
observed quantities, the normalized mean bias factors were

Geosci. Model Dev., 10, 3861–3888, 2017 www.geosci-model-dev.net/10/3861/2017/



T. R. Khan and J. A. Perlinger: Evaluation of five dry particle deposition parameterizations 3869
Ta

bl
e

1.
M

ea
su

re
m

en
ts

tu
di

es
us

ed
to

ev
al

ua
te

th
e

fiv
e

pa
ra

m
et

er
iz

at
io

ns
.

L
an

d
us

e
N

o.
Ti

tle
A

ut
ho

rs
L

oc
at

io
n

L
at

itu
de

L
on

gi
tu

de
E

le
va

tio
n

Sa
m

pl
in

g
da

te
s

Pa
rt

ic
le

si
ze

ca
te

go
ry

a.
m

.s
.l.

(m
)

(µ
m

)

G
ra

ss
1

D
ry

de
po

si
tio

n
of

fin
e

ae
ro

so
lt

o
a

gr
as

s
su

rf
ac

e
A

lle
n

et
al

.(
19

91
)

U
K

51
.8

8◦
N

0.
94
◦

E
28

Ju
ne

19
88

–J
un

e
19

89
0.

48
2

A
n

ed
dy

-c
or

re
la

tio
n

m
ea

su
re

m
en

to
fp

ar
tic

ul
at

e
de

po
si

tio
n

fr
om

th
e

at
-

m
os

ph
er

e
W

es
el

y
et

al
.(

19
77

)
U

S
38

.8
4◦

N
90

.0
6◦

W
22

5
Fe

br
ua

ry
–M

ar
ch

19
76

0.
07

5

3
E

dd
y

co
rr

el
at

io
n

m
ea

su
re

m
en

ts
of

at
m

os
ph

er
ic

flu
xe

s
of

oz
on

e,
su

lf
ur

,
an

d
pa

rt
ic

ul
at

es
du

ri
ng

th
e

C
ha

m
pa

ig
n

in
te

rc
om

pa
ri

so
n

st
ud

y
N

eu
m

an
n

an
d

de
n

H
ar

to
g

(1
98

5)
U

S
40

.1
1◦

N
88

.2
7◦

W
22

5
Ju

ne
19

82
0.

10
–2

.2
8

4
M

ic
ro

m
et

eo
ro

lo
gi

ca
lm

ea
su

re
m

en
ts

of
pa

rt
ic

le
de

po
si

tio
n

ve
lo

ci
tie

s
to

m
oo

rl
an

d
ve

ge
ta

tio
n

N
em

itz
et

al
.(

20
02

)
U

K
55

.7
9◦

N
3.

23
◦

W
10

9
M

ay
–O

ct
ob

er
19

99
0.

12
–0

.4
5

5
E

dd
y

co
rr

el
at

io
n

m
ea

su
re

m
en

ts
of

ae
ro

so
ld

ep
os

iti
on

to
gr

as
s

Vo
ng

et
al

.(
20

04
)

U
S

44
.4

6◦
N

12
3.

11
◦

W
81

M
ay

–J
un

e
20

00
0.

52

C
on

if
er

ou
s

6
T

he
L

an
de

se
xp

er
im

en
t:

bi
os

ph
er

e–
at

m
os

ph
er

e
ex

ch
an

ge
so

fo
zo

ne
an

d
L

am
au

d
et

al
.(

19
94

)
Fr

an
ce

44
.8

4◦
N

0.
58
◦

W
58

Ju
ne

19
92

0.
04

fo
re

st
ae

ro
so

lp
ar

tic
le

s
ab

ov
e

a
pi

ne
fo

re
st

7
M

ic
ro

m
et

eo
ro

lo
gi

ca
lm

ea
su

re
m

en
to

ft
he

dr
y

de
po

si
tio

n
flu

x
of

su
lfa

te
an

d
ni

tr
at

e
ae

ro
so

ls
to

co
ni

fe
ro

us
fo

re
st

W
ye

rs
an

d
D

uy
ze

rs
(1

99
7)

th
e

N
et

he
rl

an
ds

52
.2

7◦
N

5.
71
◦

E
26

A
pr

il–
D

ec
em

be
r1

99
3

0.
6

8
A

tm
os

ph
er

ic
pa

rt
ic

le
s

an
d

th
ei

ri
nt

er
ac

tio
ns

w
ith

na
tu

ra
ls

ur
fa

ce
s

G
al

la
gh

er
et

al
.(

19
97

)
th

e
N

et
he

rl
an

ds
52

.2
7◦

N
5.

71
◦

E
26

Ju
ne

–J
ul

y
19

93
0.

1–
0.

50
9

T
he

dr
y

de
po

si
tio

n
of

pa
rt

ic
le

s
to

a
fo

re
st

ca
no

py
:

a
co

m
pa

ri
so

n
of

m
od

el
an

d
ex

pe
ri

m
en

ta
lr

es
ul

ts
R

ui
jg

ro
k

et
al

.(
19

97
)

th
e

N
et

he
rl

an
ds

52
.2

7◦
N

5.
71
◦

E
26

Ju
ne

–J
ul

y
19

93
0.

35
–0

.6
0

10
D

ep
os

iti
on

ve
lo

ci
tie

s
of

nu
cl

ea
tio

n
m

od
e

pa
rt

ic
le

s
in

to
a

Sc
ot

s
pi

ne
fo

r-
es

t
R

an
ni

k
et

al
.(

20
00

)
Fi

nl
an

d
61

.8
5◦

N
24

.2
8◦

E
18

1
Se

pt
em

be
r2

00
0

0.
01

5–
0.

35

11
V

er
tic

al
ae

ro
so

l
flu

xe
s

m
ea

su
re

d
by

th
e

ed
dy

-c
ov

ar
ia

nc
e

m
et

ho
d

an
d

de
po

si
tio

n
of

nu
cl

ea
tio

n
m

od
e

pa
rt

ic
le

s
ab

ov
e

a
Sc

ot
s

pi
ne

fo
re

st
in

so
ut

he
rn

Fi
nl

an
d

B
uz

or
io

us
et

al
.(

20
00

)
Fi

nl
an

d
61

.8
5◦

N
24

.2
8◦

E
18

1
M

ar
ch

–M
ay

19
97

0.
01

5

12
R

el
ax

ed
ed

dy
ac

cu
m

ul
at

io
n

sy
st

em
fo

r
si

ze
-r

es
ol

ve
d

ae
ro

so
l

pa
rt

ic
le

flu
x

m
ea

su
re

m
en

ts
G

am
an

et
al

.(
20

04
)

Fi
nl

an
d

61
.8

5◦
N

24
.2

8◦
E

18
1

Se
pt

em
be

r–
O

ct
ob

er
20

01
0.

05

13
A

na
ly

se
s

of
flu

x
m

et
ho

ds
an

d
fu

nc
tio

na
ld

ep
en

de
nc

ie
s

Pr
yo

re
ta

l.
(2

00
7)

Fi
nl

an
d

61
.8

5◦
N

24
.2

8◦
E

18
1

Ja
nu

ar
y–

D
ec

em
be

r2
00

4
0.

01
–0

.0
7

D
ec

id
uo

us
14

A
er

os
ol

pa
rt

ic
le

dr
y

de
po

si
tio

n
to

ca
no

py
an

d
fo

re
st

flo
or

m
ea

su
re

d
by

G
rö

nh
ol

m
et

al
.(

20
09

)
Fi

nl
an

d
61

.8
5◦

N
24

.2
8◦

E
18

1
M

ar
ch

20
03

0.
01

–0
.0

5
fo

re
st

tw
o-

la
ye

re
dd

y-
co

va
ri

an
ce

sy
st

em
15

Fl
ux

es
of

ga
se

s
an

d
pa

rt
ic

le
s

ab
ov

e
a

de
ci

du
ou

s
fo

re
st

in
w

in
te

rt
im

e
W

es
el

y
et

al
.(

19
83

)
U

S
35

.9
8◦

N
78

.9
1◦

W
77

Ja
nu

ar
y–

Fe
br

ua
ry

19
81

0.
48

16
Si

ze
-r

es
ol

ve
d

pa
rt

ic
le

de
po

si
tio

n
ve

lo
ci

tie
so

fs
ub

-1
00

nm
di

am
et

er
pa

r-
tic

le
s

ov
er

a
fo

re
st

Pr
yo

r(
20

06
)

D
en

m
ar

k
55

.4
8◦

N
11

.6
4◦

E
40

M
ay

–J
un

e
20

04
0.

02
5–

0.
06

5

17
D

ep
os

iti
on

ve
lo

ci
ty

of
PM

2.
5

su
lfa

te
in

th
e

su
m

m
er

ab
ov

e
a

de
ci

du
ou

s
fo

re
st

in
ce

nt
ra

lJ
ap

an
M

at
su

da
et

al
.(

20
10

)
Ja

pa
n

36
.4

0◦
N

13
8.

58
◦

E
13

80
Ju

ly
20

09
2.

5

W
at

er
18

M
ec

ha
ni

sm
s

of
tr

an
sp

or
tf

ro
m

th
e

at
m

os
ph

er
e

to
th

e
E

ar
th

’s
su

rf
ac

e
M

öl
le

ra
nd

Sc
hu

m
an

n
(1

97
0)

(W
in

d
tu

nn
el

)
–

–
–

–
0.

03
–1

.1
3

19
Pa

rt
ic

le
de

po
si

tio
n

ra
te

s
on

a
w

at
er

su
rf

ac
e

as
a

fu
nc

tio
n

of
pa

rt
ic

le
di

am
et

er
an

d
ai

rv
el

oc
ity

Se
hm

el
et

al
.(

19
74

)
(W

in
d

tu
nn

el
)

–
–

–
–

0.
25

–2
9

20
A

ir
bo

rn
e

co
nc

en
tr

at
io

ns
an

d
dr

y
de

po
si

tio
n

flu
xe

s
of

pa
rt

ic
ul

at
e

sp
ec

ie
s

to
su

rr
og

at
e

su
rf

ac
es

de
pl

oy
ed

in
so

ut
he

rn
L

ak
e

M
ic

hi
ga

n
Z

uf
al

le
ta

l.
(1

99
8)

U
S

44
.0

0◦
N

87
.0

0◦
W

–
Ju

ly
19

94
;J

an
ua

ry
19

95
0.

4–
24

.0

21
D

et
er

m
in

at
io

n
of

si
ze

-d
ep

en
de

nt
dr

y
pa

rt
ic

le
de

po
si

tio
n

ve
lo

ci
tie

s
w

ith
m

ul
tip

le
in

tr
in

si
c

el
em

en
ta

lt
ra

ce
rs

C
af

fr
ey

et
al

.(
19

98
)

U
S

44
.0

0◦
N

87
.0

0◦
W

–
Ju

ly
19

94
0.

05
–4

8.
0

Ic
e/

sn
ow

22
A

er
os

ol
dr

y
de

po
si

tio
n

m
ea

su
re

d
w

ith
ed

dy
-c

ov
ar

ia
nc

e
te

ch
ni

qu
e

at
W

as
a

an
d

A
bo

a,
D

ro
nn

in
g

M
au

d
L

an
d,

A
nt

ar
ct

ic
a

G
ro

nl
un

d
et

al
.(

20
02

)
A

nt
ar

ct
ic

a
73

.0
0◦

S
13

.4
1◦

W
58

4
Ja

nu
ar

y
20

00
0.

02
–0

.2

23
D

ep
os

iti
on

ve
lo

ci
ty

of
ul

tr
afi

ne
pa

rt
ic

le
s

m
ea

su
re

d
w

ith
th

e
ed

dy
-

co
rr

el
at

io
n

m
et

ho
d

ov
er

th
e

N
an

se
n

Ic
e

Sh
ee

t(
A

nt
ar

ct
ic

a)
C

on
tin

ie
ta

l.
(2

01
0)

A
nt

ar
ct

ic
a

74
.8

8◦
S

16
3.

17
◦

W
84

.7
D

ec
em

be
r2

00
6

0.
06

–0
.0

70

24
O

n
th

e
po

te
nt

ia
lc

on
tr

ib
ut

io
n

of
op

en
le

ad
pa

rt
ic

le
em

is
si

on
s

to
th

e
ce

n-
tr

al
A

rc
tic

ae
ro

so
lc

on
ce

nt
ra

tio
n

H
el

d
et

al
.(

20
11

a)
A

rc
tic

O
ce

an
87

.0
0◦

N
6.

00
◦

W
–

A
ug

us
t–

Se
pt

em
be

r2
00

8
0.

04
5

25
N

ea
r-

su
rf

ac
e

pr
ofi

le
s

of
ae

ro
so

ln
um

be
rc

on
ce

nt
ra

tio
n

an
d

te
m

pe
ra

tu
re

ov
er

th
e

A
rc

tic
O

ce
an

H
el

d
et

al
.(

20
11

b)
A

rc
tic

O
ce

an
87

.0
0◦

N
6.

00
◦

W
–

A
ug

us
t–

Se
pt

em
be

r2
00

8
0.

04
5

26
C

or
re

la
tio

n
of

dr
y

de
po

si
tio

n
ve

lo
ci

ty
an

d
fr

ic
tio

n
ve

lo
ci

ty
ov

er
di

ff
er

-
en

ts
ur

fa
ce

s
fo

rP
M

2.
5

an
d

pa
rt

ic
le

nu
m

be
rc

on
ce

nt
ra

tio
ns

D
on

at
eo

an
d

C
on

tin
i(

20
14

)
A

nt
ar

ct
ic

a
74

.8
8◦

S
16

3.
17
◦

W
–

D
ec

em
be

r2
00

6
0.

01
5,

0.
13

27
A

n
ex

pe
ri

m
en

ta
la

nd
th

eo
re

tic
al

in
ve

st
ig

at
io

n
of

th
e

dr
y

de
po

si
tio

n
of

pa
rt

ic
le

s
to

sn
ow

,p
in

e
tr

ee
s

an
d

ar
tifi

ci
al

co
lle

ct
or

s
Ib

ra
hi

m
et

al
.(

19
83

)
C

an
ad

a
51

.2
5◦

N
85

.3
2◦

W
45

0
Fe

br
ua

ry
19

80
;M

ar
ch

19
81

0.
7,

0.
8,

7.
0

28
E

dd
y

co
rr

el
at

io
n

m
ea

su
re

m
en

ts
of

th
e

dr
y

de
po

si
tio

n
of

pa
rt

ic
le

si
n

w
in

-
te

rt
im

e
D

ua
n

et
al

.(
19

88
)

U
S

40
.7

0◦
N

77
.9

6◦
W

17
7

D
ec

em
be

r1
98

5
0.

22
,0

.7
3

29
Tu

rb
ul

en
ta

er
os

ol
flu

xe
s

ov
er

th
e

A
rc

tic
O

ce
an

1.
D

ry
de

po
si

tio
n

ov
er

se
a

an
d

pa
ck

ic
e

N
ils

so
n

an
d

R
an

ni
k

(2
00

1)
A

rc
tic

O
ce

an
88

.0
0◦

N
15

.0
0◦

E
–

A
ug

us
t1

99
9

0.
02

,0
.0

5

www.geosci-model-dev.net/10/3861/2017/ Geosci. Model Dev., 10, 3861–3888, 2017



3870 T. R. Khan and J. A. Perlinger: Evaluation of five dry particle deposition parameterizations

calculated for the pairs of modeled (Vd(modeled),i) and mea-
sured dry deposition velocities (Vd(measured),i), respectively.
In this study, the expressions for computing BNMBF used in
two different forms, which are the following.

For the Vd(modeled),i >Vd(measured),i case (i.e., overestima-
tion),

BNMBF =

∑
Vd(modeled),i∑
Vd(measured),i

− 1. (64)

For the Vd(modeled),i <Vd(measured),i case (i.e., underestima-
tion),

BNMBF = 1−
∑
Vd(measured),i∑
Vd(modeled),i

. (65)

The stepwise derivation of Eqs. (64)–(65) and their applica-
tion in training air quality datasets are illustrated by Yu et
al. (2006).

3.2 Uncertainty analysis of the dry deposition
parameterizations

To quantify the influence of imprecision in the model in-
put parameter values on the modeled velocities, a classical
Monte Carlo uncertainty analysis was applied. The Monte
Carlo techniques have been widely used to evaluate the prop-
agated uncertainty in the modeled outputs in many geophys-
ical models (e.g., Alcamo and Bartnickj, 1987; Derwent and
Hov, 1988; Chen et al., 1997; Tatang et al., 1997; Hanna
et al., 1998, 2001; Bergin et al., 1999; Bergin and Milford,
2000; Beekman and Derognat, 2003; Mallet and Sportisse,
2006). Monte Carlo uncertainty evaluation techniques are
relatively straightforward and flexible means for incorporat-
ing probabilistic values in the modeled dry deposition ve-
locities. Indeed, the techniques are less reliant on assump-
tions about distributions of the input parameters (Hanna et
al., 2001).

In this study, we define uncertainty in the parameteriza-
tions as the inability to confidently specify single-valued
quantities because of the imprecision in the model input pa-
rameters. A classical Monte Carlo uncertainty method was
applied to assess the overall uncertainty of a dry deposition
parameterization with regard to the uncertainties in the fol-
lowing input parameters: RH, h, z0, d, LAI, U , u∗, and LO.
The uncertainty estimates for those input parameters were
obtained from the literature and are presented in Table 2. Us-
ing the uncertainty ranges for each of these parameters, uni-
form probability distribution functions were assigned since
information on their actual distributions is lacking. It is noted
that a constant dry particle density of 1500 kg m−3 (Petroff
and Zhang, 2010) was used in all Monte Carlo simulations.
Because of the inhomogeneous nature of ambient particles,
accurate measurement of particle density is challenging. In
their work, Oskouie et al. (2003) developed methods using a
time-of-flight instrument to minimize the effect of uncertain-
ties in density estimation in particle size characterization.

The Monte Carlo simulations were performed using R sta-
tistical software (version 3.2.4). Each simulation was run by
randomly drawing 100 samples from the assigned uniform
probability density function (PDF). The simulations were re-
peated 10 000 times. Frequency distributions or the PDFs
of the modeled dry deposition velocity are the basic results
of the Monte Carlo simulations. These PDFs were approxi-
mated assuming normal distributions, and then the 5th, 50th,
and 95th percentile dry deposition velocities were computed.
We use the range of the central 90 % (the difference between
95th and 5th percentiles) of the PDFs as a convenient mea-
sure of uncertainty in the modeled deposition velocity. These
steps were repeated for all five parameterizations using seven
different particle sizes: 0.005, 0.05, 0.5, 1.0, 1.5, 2.0, and
2.5 µm on the five selected five LUCs (i.e., grass, deciduous
and coniferous forests, water, and ice/snow). These particle
sizes were selected to represent four distinct particle modes:
nucleation (< 0.01 µm), Aitken (0.01–0.1 µm), accumulation
(0.1–1.0 µm), and coarse (> 1.0 µm), respectively.

3.3 Sensitivity analysis

In this study, the Sobol’ sensitivity method (Sobol’, 1993)
was applied to identify the most influential input parameter
or the set of parameters of a dry deposition parameteriza-
tion, and to characterize the relative contribution of the pa-
rameters to the overall variability in the modeled Vd. As op-
posed to the local sensitivity analysis (e.g., OAT approach),
the Sobol’ method is a global sensitivity approach, in which
a set of input parameters of a model can be varied simulta-
neously over their entire parameter value space to identify
their relative contributions to the overall model output vari-
ance. The Sobol’ method has been applied in environmental
modeling applications (Tang et al., 2007; Pappenberger et al.,
2008; van Werkhoven et al., 2008; Yang, 2011) but has not
yet been applied in dry deposition modeling research. Given
that in most of the dry deposition parameterizations, model
inputs can span a wide range within their physical realms, the
application of a global sensitivity analysis used in this study
should be viewed as a critical step toward the understanding
of different subphysical processes of particle deposition.

In the Sobol’ method, the variance contributions to the to-
tal output variance of individual parameters and parameter
interactions can be determined. These contributions are char-
acterized by the ratio of the partial variance (Vi) to the total
variance (V ) as expressed in Eq. (66). This ratio is commonly
termed as Sobol’ first-order index (Si) (Saltelli et al., 2010;
Nossent et al., 2011). The first-order indices represent the
fractions of the unconditional model output variance. In this
study, Sobol’ first-order sensitivity indices were calculated as

Si =
Vi

V
=
VXi

(
EX∼i (Vd|Xi)

)
V (Vd)

, (66)

where Xi is the ith input parameter and X∼i denotes the ma-
trix of all input parameters but Xi . The meaning of the inner
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Table 2. Parameter values and associated uncertainties used in Monte Carlo simulation.

Parameter Base value (assumed) Uncertainty Reference∗

Relative humidity, RH (%) 80 (all LUCs) ±5 % Heinonen (2002)
Wind speed, U (m s−1) 4 (all LUCs) ±3 % Högström and Smedman (2004)
Friction velocity, u∗ (m s−1) 0.3 (all LUCs) ±10 % Andreas (1992)
Monin–Obukhov length, LO (m) 50 (all LUCs) ±10 % Weidinger et al. (2000)
Roughness length, z0 (m) 0.04 (grass) ±25 % Su et al. (2001)

1.2 (coniferous forest)
1.5 (deciduous forest)
0.001 (ice/snow)

Canopy height, h (m) 0.5 (grass) ±5 % Larjavaara and Muller-Landau (2013)
15 (coniferous forest)
25 (dciduous forest)

Zero-plane displacement height, d (m) 0.3 (grass) ±25 % Su et al. (2001)
7 (coniferous forest)
16 (deciduous forest)

Leaf area index (one-sided), LAI (m2 m−2) 4 (grass) ±5 % Richardson et al. (2011)
10 (coniferous forest)
10 (deciduous forest)

∗ The references are for the uncertainty values (in percentage).

expectation operator is that the mean of Vd is taken over all
possible values of X∼i while keeping Xi fixed. The outer
variance is taken over all possible values of Xi . The variance
V (Vd) in the denominator is the total (unconditional) vari-
ance.

The numerator in Eq. (66) can be interpreted as follows:
VXi (EX∼i (Vd|Xi)) is the expected reduction in variance that
would be obtained if Xi could be fixed. In regard to the
variability of the model input parameters in dry deposition
schemes, Si provides a means to quantify the effect of pa-
rameter Xi by itself. A higher order (Sij ) or total order (STi)

can be computed when the total effect of a parameter, inclu-
sive of all its interaction with other model input parameters,
is of interest. In this paper, we confine the sensitivity analysis
to Sobol’ first-order indices only.

For each of the five parameterizations evaluated here, four
to nine input parameters were selected for determining the
first-order Sobol’ sensitivity indices. An exception to apply-
ing the Sobol’ method was made for the KS12 parameteri-
zation while evaluating the parameter sensitivity for smooth
surfaces. Due to the complex nature of KS12 smooth sur-
face parameterization, it was not computationally feasible to
apply the Sobol’ method. Instead, the OAT approach was
applied for water and ice/snow surfaces. Note that the total
number of input parameters that go into each model varies
between parameterizations, and LUC types. For each param-
eterization, five particle sizes (dp = 0.001, 0.01, 0.1, 1.0, and
10 µm) were assessed for Sobol’ analysis. The sensitivity of
each parameterization was tested for the following three sets
of input parameters for five LUCs: (i) particle properties,
(ii) aerodynamic parameters, and (iii) surface characteristics
of particle deposition. First, the sensitivity of particle depo-

sition to particle properties (aerodynamic diameter and den-
sity) was tested. Sensitivity indices were calculated for the
particle size range of 0.001 to 10 µm. Second, the sensitivity
of the schemes was tested for aerodynamic parameters (fric-
tion velocity, wind speed, and stability condition) for differ-
ent particle sizes, one at a time. Third, the sensitivity of the
schemes to surface characteristics was tested. Surface char-
acteristics include h, z0, d , and LAI. The sensitivity ranges
for the parameter values used for Sobol’ analysis are reported
in Table 3.

The Sobol 2007 package in the R statistical software pack-
age (version 3.2.4) was used to perform the Sobol’ sensitiv-
ity analysis. In the Sobol’ method, the Monte Carlo simula-
tions were performed by drawing samples from the assigned
parameter value distribution. In this study, all the selected
parameters were approximated using uniform PDFs. To as-
sert uncertainty in the simulations, bootstrapping (Efron and
Tibshirani, 1994) with resampling was used to achieve 95 %
confidence intervals on the Sobol’ first-order indices. For a
fixed particle size, the simulations were run 100 000 times
and samples were bootstrapped 1000 times. To identify the
most important parameters in each of the five dry deposition
models with respect to particle size and LUC, a parameter
ranking (e.g., from most to least influential) was conducted.

The results section is organized in the following manner.
First, the accuracy of five dry deposition parameterizations
(i.e., Z01, PZ10, KS12, ZH14, and ZS14) is compared with
measured dry deposition velocities obtained from five LUCs.
Second, the uncertainties in modeled dry deposition veloc-
ities due to the imprecision in the model input parameter
values quantified using Monte Carlo simulation techniques
are presented. Third, the sensitivity analysis results for mod-
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Table 3. Input parameter ranges for the Sobol’ sensitivity analysis.

Parameter Range Reference

Relative humidity, RH (%) 10–100 (all LUCs) Assumed
Dry particle density, ρ (kg m−3) 1500–2000 (all LUCs) Studies 1–29
Wind speed, U (m s−1) 1–5 (all LUCs) Studies 1–29
Friction velocity, u∗ (m s−1) 0.1–0.5 (all LUCs) Studies 1–29
Monin–Obukhov length, LO (m) 10–100 (all LUCs) Studies 1–29
Roughness length, z0 (m) 0.02–0.10 (grass) Studies 1–5

0.9–3.0 (coniferous forest) Studies 6–14
0.5–1.5 (deciduous forest) Studies 15–17
0.00002–0.0066 (ice/snow) Studies 22–29

Canopy height, h (m) 0.15–0.77 (grass) Studies 1–5
14–20 (coniferous forest) Studies 6–14
20–25 (deciduous forest) Studies 15–17

Zero-plane displacement height, d (m) 0.10–0.49 (grass) Studies 1–5
7–12 (coniferous forest) Studies 6–14
8–16 (deciduous forest) Studies 15–17

Leaf area index (one-sided), LAI (m2 m−2) 1–4 (grass) Studies 1–5
0.2–10 (coniferous forest) Studies 6–14
0.2–10 (deciduous forest) Studies 15–17

∗ Studies are listed in Table 1.

eled dry deposition velocities by the five parameterizations
are presented.

4 Results

4.1 Evaluation of the dry deposition parameterizations

Field measurements conducted on five LUCs (grass, conif-
erous forest, deciduous forest, water surfaces, and ice/snow)
were used to evaluate the agreement between measured and
modeled dry deposition velocity (Vd). The parameterizations
were run using reported values of the meteorological (e.g.,
U , u∗, T , RH, and LO) and canopy (e.g., h, z0, d, and LAI)
parameters, and particle properties (e.g., dp and ρ) from the
measurement studies. Reasonable parameter values were as-
sumed for any missing or unreported parameters. Normalized
mean bias factors (BNMBF) were used as an indicator of the
agreement between measured and modeled Vd. BNMBF is a
signed quantity – its magnitude indicates the factor by which
the modeled and observed Vd values differ from each other,
and its sign provides an indicator as to whether the modeled
Vd is greater or less than the measured Vd. It is to be noted
that uncertainties in the measured dry deposition velocities
were not considered while evaluating the performance of the
five parameterizations in terms of accuracy.

4.1.1 Evaluation of dry deposition to grass

Five measurement studies conducted on grass (Wesely et al.,
1977; Allen et al., 1991; Neumann and den Hartog, 1985;
Nemitz et al., 2002; and Vong et al., 2004) were used to

evaluate the accuracy of the parameterizations. In those stud-
ies, reported values of meteorological parameters, canopy
properties, and particle size vary widely. For example, the
u∗ varies from 0.05 to 0.70 m s−1, wind speed (U) varies
from 0.67 to 6.20 m s−1, particle size (dp) varies from 0.05
to 2.28 µm, and LAI varies from 2 to 4 m2 m−2. The param-
eterizations were fed with reported values from each of the
studies to reduce any uncertainty in the accuracy comparison;
however, for any missing parameter value(s), the assumed in-
put parameter values typically fell within the aforementioned
ranges.

Table 4 summarizes the BNMBF for modeled Vd computed
against five measurement studies on grass. The BNMBF is in-
terpreted as follows: for example, if BNMBF is positive, the
parameterization overestimates the measured Vd by a factor
of BNMBF+ 1. If BNMBF is negative, the model underesti-
mates the measured Vd by a factor of 1-BNMBF. For the case
using the observations from Allen et al. (1991), the BNMBF
values of −17.61, −18.12, −0.55, and −5.13 indicate that
the Z01, KS12, ZH14, and ZS14 parameterizations under-
estimated the measured Vd by factors of 18.61, 19.12, 1.55,
and 6.13, respectively, whereas the BNMBF value of +15.96
indicates that the PZ10 parameterization overestimated the
observations by a factor of 16.96.

These results provide means for a relative comparison of
the parameterizations’ accuracy. For instance, the BNMBF
values corresponding to the Allen et al. (1991) study suggest
that the ZH14 parameterization is the most accurate and the
KS12 parameterization is least accurate. Similar comparison
between the modeled and observed Vd can be made using
the BNMBF values for the remaining four studies in Table 4.
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Table 4. Results of the normalized mean bias factors for grass (boldfaced value indicates the most accurate parameterization).

Dry particle deposition parameterization

Study Z01 PZ10 KS12 ZH14 ZS14

Allen et al. (1991) −17.61 15.96 −18.12 −0.55 −5.13
Wesely et al. (1977) −2.78 −28.78 −7.56 −10.62 −102.92
Neumann and den Hartog (1985) 0.96 −0.12 −0.50 4.79 0.56
Nemitz et al. (2002) 5.15 1.12 −3.82 2.17 −0.10
Vong et al. (2004) −4.55 −4.55 −25.71 −2.12 −4.03

Five studies 5.45 −1.80 −9.37 −0.54 −4.30

Nonetheless, it is evident that none of the parameterizations
performed best in terms of accuracy for all of the five studies
since the BNMBF values show high variability both in terms
of the magnitude and direction of the bias (i.e., positive or
negative) when assessed against all the five studies listed in
Table 4.

The characteristics of a parameterization (e.g., Z01) to si-
multaneously overpredict (i.e., the positive BNMBF for Neu-
mann and den Hartog, 1985, and Nemitz et al., 2002) and
underpredict (i.e., the negative BNMBF for Allen et al., 1991;
Wesely et al., 1977; and Vong et al., 2004) the measurements
could be misleading, resulting in erroneous judgement of the
performance of the parameterizations. To address this limita-
tion, an ensemble approach was taken, in which BNMBF was
calculated for each of the parameterizations using all the ob-
servations reported in the five studies. The results from this
ensemble analysis indicate that, except for the Z01 param-
eterization, the other four parameterizations underestimated
the measured Vd by factors ranging from 1.54 to 10.37. In
contrast, the Z01 parameterization overestimated the obser-
vation by a factor of 6.45 (Table 4). Overall, these results
indicate that the ZH14 parameterization provided the best
agreement between the measured and modeled Vd of the five
parameterizations.

4.1.2 Evaluation of dry deposition to coniferous forest

Nine studies conducted on coniferous forest (Lamaud et al.,
1994; Wyers and Duyzers, 1997; Gallagher et al., 1997; Rui-
jgrok et al., 1997; Rannik et al., 2000; Buzorious et al., 2000;
Gaman et al., 2004; Pryor et al., 2007; and Grönholm et al.,
2009) were used to evaluate the accuracy of the parameter-
izations. In these studies, the largest variations (ranges are
given in the parentheses) were associated with u∗ (0.06–
1.30 m s−1), U (0.60–6.19 m s−1), LAI (6–10 m2 m−2), and
dp (0.01–0.60 µm). For any missing parameter value(s), the
assumed input parameter values typically fell within the
aforementioned ranges.

Comparison of the computed BNMBF values for coniferous
forest (Table 5) shows that the majority of the simulations
performed using the five parameterizations underestimated
the measured Vd. For example, the PZ10 parameterization

underestimated observed Vd by factors ranging from 1.51 to
27.98 (BNMBF values varied from−0.51 to−26.98) for eight
of the nine studies on coniferous forest. Table 5 also illus-
trates that both the magnitude and sign of the BNMBF values
varied widely when the accuracy of the five parameteriza-
tions was evaluated against only one study (e.g., Pryor et al.,
2007). Of the BNMBF values associated with the Rannik et
al. (2000) study, the Z01 and KS12 parameterizations overes-
timated the measured Vd by factors of 4.16 and 1.51, respec-
tively, whereas the PZ10, ZH14, and ZS14 parameterizations
underestimated the measured Vd by factors of 3.54, 2.13, and
19.75, respectively. The bias factors for the Z01 parameter-
ization for the studies of Lamaud et al. (1994), Gallagher et
al. (1997), Buzorious et al. (2000), and Gaman et al. (2004)
were +0.77, −1.74, +0.75, and −0.90, respectively. Com-
paring these values with the corresponding BNMBF values of
the other four parameterizations, it can be deduced that the
Z01 parameterization is the most accurate against those ob-
servations reported in these four studies. However, the accu-
racy of the Z01 parameterization is not the best for the other
five studies, as can be seen from Table 5.

An ensemble approach similar to the one described in the
previous section was used to determine the most and the least
accurate parameterizations. From this analysis, the bias fac-
tors for the Z01, PZ10, KS12, ZH14, and ZS14 parameteri-
zations are −2.35, −3.93, −1.75, −2.31, and −3.67, respec-
tively, suggesting that the KS12 is the most accurate param-
eterization (i.e., underpredicted the observations by a factor
of 2.75), and the PZ10 is the least accurate parameterization
(i.e., underpredicted the observations by a factor of 4.93) for
coniferous forest. It can be noted that the performance of the
Z01 and ZH14 parameterizations is nearly identical, while
the ZH14 is the second most accurate (i.e., underpredicted
the observations by a factor of 3.31).

4.1.3 Evaluation of dry deposition to deciduous forest

A similar comparison between measured and modeled Vd
was performed using three studies (Wesely et al., 1983;
Pryor, 2006; and Matsuda et al., 2010) for deciduous forest.
In these studies, the largest variations (ranges are given in
the parentheses) were associated with u∗ (0.12–1.13 m s−1),
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Table 5. Results of the normalized mean bias factors for coniferous forest (boldfaced value indicates the most accurate parameterization).

Dry particle deposition parameterization

Study Z01 PZ10 KS12 ZH14 ZS14

Lamaud et al. (1994) 0.77 −12.75 −1.91 −2.14 −16.71
Wyers and Duyzers (1997) −25.98 −26.98 −81.39 −13.57 −4.51
Gallagher et al. (1997) −1.74 −6.34 −19.83 −1.90 −2.39
Ruijgrok et al. (1997) −5.70 −0.51 −0.93 −2.58 −0.48
Rannik et al. (2000) 3.16 −2.54 0.51 −1.13 −18.75
Buzorious et al. (2000) 0.75 −6.65 −2.91 −4.53 −67.41
Gaman et al. (2004) −0.90 −13.00 −6.12 −1.84 −17.45
Pryor et al. (2007) 0.69 −5.37 −0.26 −0.84 −12.22
Grönholm et al. (2009) 0.95 0.13 1.55 1.72 −1.90

Nine studies −2.35 −3.93 −1.75 −2.31 −3.67

Table 6. Results of the normalized mean bias factors for deciduous forest (boldfaced values indicate the most accurate parameterization).

Dry particle deposition parameterization

Study Z01 PZ10 KS12 ZH14 ZS14

Wesely et al. (1983) −9.25 −130.30 −34.58 −5.27 −2.28
Pryor (2006) 1.55 −2.42 −2.42 −0.90 −13.62
Matsuda et al. (2010) −5.19 −1.34 −1.91 −2.37 −0.15

Three studies −8.11 −4.51 −4.96 −3.75 −10.93

U (1.20–6.00 m s−1), LAI (0.20–10 m2 m−2), and dp (0.05–
2.50 µm). For any missing parameter value(s), the assumed
input parameter values typically fell within the aforemen-
tioned ranges.

Computed BNMBF values for deciduous forest are pre-
sented in Table 6. For the Wesely et al. (1983) study, com-
parison of the BNMBF values between the parameterizations
shows that the performance of the ZS14 parameterization
was the most accurate (i.e., BNMBF=−2.28; underpredicted
the observations by a factor of 3.28). The BNMBF values as-
sociated with the PZ10 parameterization showed strong vari-
ation between the studies (e.g., 2 orders of magnitude dis-
crepancy between the Wesely et al., 1983 and Pryor, 2006 or
Matsuda et al., 2010 studies).

Evidently, none of the parameterizations performed con-
sistently better for all the three studies. Overall, the re-
sults from the ensemble approach show that all the param-
eterizations overestimated the observations reported in three
studies. Considering the BNMBF values obtained by this ap-
proach, it is apparent that the ZH14 is the most accurate pa-
rameterization (i.e.,BNMBF =−3.75; underestimated the ob-
served Vd by a factor of 4.75), and the ZS14 is the least ac-
curate of the five parameterizations (i.e., BNMBF =−10.93;
underestimated the observed Vd by a factor of 11.93) for de-
ciduous forest.

4.1.4 Evaluation of dry deposition to water surfaces

Only a limited number of measurement studies on size-
segregated dry deposition over natural water surfaces are
available in the literature. In this research, four studies
(Möller and Schumann, 1970, Sehmel et al., 1974, Zuffal et
al., 1998, and Caffery et al., 1998) conducted over water sur-
faces were used to evaluate the parameterizations’ accuracy.
From these studies, the reported values of the parameters that
show the largest variations (ranges are given in the parenthe-
ses) are u∗ (0.11–0.40 m s−1) and dp (0.03 to 48 µm).

Table 7 shows that the PZ10 parameterization performed
best for two studies (i.e., Möller and Schumann, 1970 and
Caffery et al., 1998), in which BNMBF values were −1.65
and +0.35, respectively. Comparison of the BNMBF values
between the Z01 and ZH14 parameterizations reveals that the
accuracy of the two parameterizations varied widely among
the studies (e.g., BNMBF ranged from −0.144 to +18.87 and
−0.33 to +10.28, respectively). Nevertheless, none of the
five parameterizations was able to reproduce the measured
Vd satisfactorily for all the four studies. Comparison of the
BNMBF values obtained by the ensemble approach showed
that the ZH14 parameterization is the most accurate, which
underestimated the measured Vd by a factor of 1.25 (i.e.,
BNMBF =−0.25), and the PZ10 is the least accurate param-
eterization (i.e., BNMBF =−0.89).
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Table 7. Results of the normalized mean bias factors for water surfaces (boldfaced value indicates the most accurate parameterization).

Dry particle deposition parameterization

Study Z01 PZ10 KS12 ZH14 ZS14

Möller and Schumann (1970) 18.87 −1.65 −2.51 10.28 106.00
Sehmel et al. (1974) 0.44 0.45 −0.59 1.51 3.65
Zufall et al. (1998) −0.144 −0.39 −0.47 −0.33 5.14
Caffrey et al. (1998) 0.75 0.35 −0.85 0.70 3.61

Four studies 0.52 −0.89 −0.64 −0.25 4.22

Table 8. Results of the normalized mean bias factors for ice/snow surfaces (boldfaced value indicates the most accurate parameterization).

Dry particle deposition parameterization

Study Z01 PZ10 KS12 ZH14

Gronlund et al. (2002) −1.22 −271.73 −105.92 −2.58
Contini et al. (2010) 5.68 −57.22 −24.96 0.62
Held et al. (2011a) 2.96 −38.66 −15.58 0.67
Held et al. (2011b) 2.78 −42.93 −16.71 0.52
Donateo and Contini (2014) 1.62 −35.26 −12.57 −0.32
Ibrahim et al. (1983) 4.14 −6.72 −7.72 3.98
Duan et al. (1988) 0.22 −12.09 −15.49 0.42
Nilsson and Rannik (2001) 1.69 −37.78 −13.46 −0.74

Eight studies 1.98 −53.03 −21.80 0.26

4.1.5 Evaluation of dry deposition to snow and ice
surfaces

Two studies over snow (Ibrahim et al., 1983; and Duan et al.,
1988) and six studies over ice surfaces (Nilsson and Rannik,
2001; Gronlund et al., 2002; Contini et al., 2010; Held et al.,
2011a, b; and Donateo and Contini, 2014) were used to eval-
uate the accuracy of the four parameterizations (Z01, PZ10,
KS12, and ZH14) for smooth surfaces. The ZS14 parame-
terization was not included here because it does not allow
prediction of deposition over ice/snow surfaces. The BNMFB
values for the parameterizations are presented in Table 8.

Of the four parameterizations, agreement between the
modeled and measured Vd is not satisfactory for the PZ10
and KS12 parameterizations because they significantly un-
derestimated the measured Vd (e.g., the bias factors from
ensemble approach are −53.03 and −21.80, respectively).
In contrast, the Z01 and ZH14 parameterizations predicted
the measured Vd with reasonable accuracy (e.g., the bias fac-
tors from ensemble approach were+1.98 and+0.26, respec-
tively). Table 8 also shows that the ZH14 parameterization
performed best for six of the eight measurements in which
the BNMBF varied between −0.74 to 3.98. Overall, for the
nine studies combined (i.e., ensemble measurements), the
ZH14 parameterization is the most accurate (overestimated
the measured Vd by a factor of 1.26), and the PZ10 is the least

accurate parameterization (underestimated the measured Vd
by a factor of 54.03).

To summarize, the results from the ensemble evaluation of
the parameterizations are graphically shown in Fig. 2a–b for
the five LUCs. The horizontal dotted–dashed line in the plots
indicates 100 % agreement between modeled and measured
Vd, whereas any dispersion from this line either above (i.e.,
overestimation) or below (i.e., underestimation) indicates the
degree of the model’s accuracy.

4.2 Uncertainty analysis results from the Monte Carlo
simulations

The overall uncertainty in the modeled Vd due to impreci-
sion in the model inputs was assessed by performing a set
of Monte Carlo simulations on the five dry deposition pa-
rameterizations. Uncertainties (in terms of imprecision) in
the following model input parameters: RH, U , u∗, LO, h, z0,
d , and LAI were approximated using uniform distributions.
Note that not all of the five parameterizations require an iden-
tical number of input parameters. For example, Monte Carlo
simulations performed on rough surfaces (i.e., grass, conifer-
ous, and deciduous forests) for the Z01, PZ10, KS12, ZH14,
and ZS14 parameterizations; imprecision in four (RH, L, u∗,
and z0), eight (RH, L, u∗, U , z0, h, d, and LAI), four (RH,
u∗, U , and LAI), four (RH, L, u∗, and z0), and two (RH, u∗)
input parameters, respectively, was assessed to evaluate the
overall uncertainty in modeled dry deposition velocities.
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Figure 2. Ensemble-averaged, normalized mean bias factors for the five parameterizations: (a) three rough surfaces and water; (b) ice/snow.

The results from the Monte Carlo simulations are sum-
marized in Table 9 and are presented and discussed in two
steps. First, the uncertainty estimates that are shown in Ta-
ble 9 for five parameterizations on five LUCs are used to elu-
cidate the models’ precision, which is one of the indicators
of overall performance of the parameterization (Sect. 3.2.1–
3.2.5). Second, the size-dependent uncertainty ranges (i.e.,
the difference between the 95th and 5th percentiles) was di-
vided by the 50th percentile Vd, which can be treated as a
normalized measure of uncertainty. This approach was taken
to make reasonable comparison between different particle
sizes for different parameterizations (Sect. 3.2.6). Note that
the ZS14 parameterization does not treat different vegetative
covers separately; therefore, intercomparison of the Monte
Carlo simulation results is confined to the first four parame-
terizations listed in Table 9.

4.2.1 Uncertainties in the modeled Vd for grass

The uncertainties in simulated Vd (i.e., differences between
95th and 5th percentiles of distribution) for the given range
of dp (i.e., 0.005–2.5 µm) on grass varied widely (Table 9).
In the Z01 parameterization, the estimated uncertainty for
nucleation mode particles (0.0038 m s−1 for dp = 0.005 µm)
was larger than that of coarse mode particles (0.0001 m s−1

for dp > 1.0 µm). Overall, in the Z01 parameterization, the
trend was that as the particle size increased from 0.005 to
2.5 µm, uncertainties in modeled Vd decreased considerably.
In the PZ10 parameterization, the range of uncertainty for
the simulated particle sizes is narrower compared to those
of the Z01 parameterization. Although not consistent, a de-
creasing trend in uncertainties can be seen for all the parti-
cle sizes in the PZ10 parameterization. Of the simulated par-
ticle sizes, the uncertainty for dp = 0.005 µm is the largest
(0.0016 m s−1) in the KS12 parameterization. As particle
size increased from 0.005 to 2.5 µm, significant decrease in
uncertainties is observed. For dp = 0.05 to 1.5 µm, the 5th
and 95th percentile Vd values were nearly identical (Table 9),
suggesting that the KS12 parameterization is the most pre-

cise of five parameterizations specifically for those particle
sizes. From Table 9, it can be deduced that the uncertain-
ties associated with the ZH14 parameterization, which is an
improved and simplified version of the Z01 parameteriza-
tion, were fairly constant (approximately 0.0003 m s−1) for
the seven particle sizes simulated here for grass.

4.2.2 Uncertainties in the modeled Vd for coniferous
forest

For nucleation mode particles (i.e., dp = 0.005 µm),
the largest uncertainty (0.0036 m s−1, median
Vd = 0.0180 m s−1) was associated with the Z01 pa-
rameterization (Table 9). Overall, the uncertainties in the
Z01 parameterization showed a decreasing trend as the
particle size increased from 0.005 to 2.5 µm. We note that,
in the PZ10 parameterization, the relative magnitude of the
uncertainties associated with 0.005, 1.0, 1.5, 2.0, and 2.5 µm
particles was of the same order (i.e., varied between 0.0010
to 0.0031 m s−1). In comparison, uncertainties in modeled
Vd for 0.05 and 0.5 µm particles were smaller by factors of
approximately 10. In the KS12 parameterization, the largest
uncertainty was found for the nucleation mode particles
(i.e., 0.0027 m s−1; median Vd = 0.0299 m s−1), and the
uncertainties in modeled Vd decreased substantially as dp
increased. The uncertainties in modeled Vd in the ZH14
parameterization were constant (0.0002 m s−1) for all seven
particle sizes, indicating the model’s ability to reproduce dry
deposition velocities with high precision.

4.2.3 Uncertainties in the modeled Vd for deciduous
forest

A similar comparison of the uncertainties in modeled Vd can
be made for deciduous forest. It is seen from Table 9 that,
for all the parameterizations except for ZH14, the largest un-
certainties were associated with nucleation mode particles.
That is, Z01 and KS12 parameterizations showed substan-
tially greater uncertainties for dp = 0.005 µm (0.0030 and
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0.0027 m s−1, respectively) as compared to the Aitken or
coarse mode particles, for which the relative magnitude of
the uncertainties was smaller by factors of approximately 13–
30. In the KS12 parameterization, the identical values of the
5th and 95th percentile Vd values resulted in uncertainty val-
ues of zero for each simulated particle size of 0.5 to 2.0 µm,
which indicates that it is the most precise of all four param-
eterizations. In addition, the uncertainties in the modeled Vd
in the ZH14 parameterization were constant (0.0004 m s−1)

for all seven particle sizes.

4.2.4 Uncertainties in the modeled Vd for water
surfaces

For water surfaces, the uncertainties in modeled Vd var-
ied largely for the Z01 parameterization (Table 9). That is,
the largest uncertainty (0.0021 m s−1) was associated with
dp = 0.005 µm (median Vd = 0.0099 m s−1), and as dp in-
creased to 2.5 µm, the uncertainty decreased to 0.0001 m s−1

(for 2.5 µm particles, median Vd = 0.0009 m s−1). Relatively
narrower ranges in the uncertainties in modeled Vd for the
PZ10 and KS12, and constant uncertainties in the ZH14 pa-
rameterizations with regard to changes in particle size sug-
gest their higher precision as compared to the Z01 parame-
terization under similar model input parameter uncertainties.
Overall, as compared to the simulated uncertainties in the
modeled Vd by the Z01, PZ10, KS12, and ZH14 parameteri-
zations, uncertainties in the ZS14 parameterization are larger
for dp = 0.05 to 2.5 µm.

4.2.5 Uncertainties in the modeled Vd for ice/snow
surfaces

Comparison between the simulated uncertainties in modeled
Vd revealed that the uncertainties vary significantly for the
Z01 and KS12 parameterizations as dp changes. For exam-
ple, uncertainties estimated from Table 9 for these two pa-
rameterizations decreased from 0.0023 to 0.0003 and 0.0027
to 0.0008 m s−1, respectively, as particle size increased from
0.005 to 2.5 µm. Note that the median Vd by the PZ10 pa-
rameterization is an order of magnitude lower than that of the
other three parameterizations, which results in close to zero
uncertainties for all seven particle sizes. It was also revealed
in Table 9 that the uncertainties in the ZH14 parameteriza-
tion are constant (0.0002 m s−1) with regard to changes in
the particle size.

4.2.6 Normalized uncertainties in the modeled Vd

An extended analysis of the results presented in the previ-
ous sections is summarized here. The normalized uncertain-
ties presented in Table 10 can be interpreted as follows: any
value that is closer to zero indicates higher model preci-
sion (i.e., less uncertainty). As shown in Table 10, the nor-
malized uncertainties for grass and dp = 0.005 µm associ-
ated with the Z01, PZ10, KS12, ZH14, and ZS14 parame-

Table 10. Normalized uncertainties in modeled dry deposition ve-
locities.

Dry particle deposition parameterization

Land use Particle size, Z01 PZ10 KS12 ZH14 ZS14
category dp (µm)

Grass 0.005 0.20 0.11 0.09 0.20 0.20
0.05 0.18 0.13 0.00 0.20 0.00

0.5 0.22 0.00 0.00 0.20 0.33
1.0 0.16 0.11 0.07 0.17 0.34
1.5 0.14 0.11 0.12 0.17 0.33
2.0 0.12 0.12 0.14 0.16 0.32
2.5 0.14 0.13 0.14 0.11 0.31

Coniferous 0.005 0.20 0.13 0.09 0.17
forest 0.05 0.18 0.11 0.13 0.17

0.5 0.13 0.08 0.00 0.17
1.0 0.16 0.10 0.16 0.17
1.5 0.13 0.11 0.20 0.16
2.0 0.11 0.13 0.22 0.15
2.5 0.14 0.15 0.21 0.13

Deciduous 0.005 0.21 0.21 0.09 0.18
forest 0.05 0.20 0.20 0.13 0.18

0.5 0.13 0.27 0.00 0.18
1.0 0.16 0.29 0.04 0.18
1.5 0.13 0.28 0.06 0.17
2.0 0.10 0.28 0.08 0.16
2.5 0.14 0.27 0.21 0.15

Water 0.005 0.21 0.25 0.18 0.17 0.18
0.05 0.18 0.00 0.18 0.17 0.36

0.5 0.20 0.00 0.18 0.17 0.33
1.0 0.17 0.03 0.18 0.18 0.31
1.5 0.15 0.05 0.18 0.17 0.28
2.0 0.15 0.07 0.18 0.16 0.26
2.5 0.11 0.25 0.18 0.14 0.24

Ice/snow 0.005 0.18 0.00 0.09 0.17
0.05 0.16 0.00 0.07 0.17

0.5 0.14 0.00 0.00 0.17
1.0 0.17 0.05 0.20 0.17
1.5 0.20 0.07 0.25 0.16
2.0 0.28 0.08 0.27 0.15
2.5 0.30 0.00 0.28 0.13

terizations are 0.20, 0.11, 0.09, 0.20, and 0.20, respectively.
These results suggest that KS12 is the least uncertain (i.e.,
most precise) parameterization for nucleation mode parti-
cles, whereas the Z01, ZH14, and ZS14 are the most uncer-
tain (i.e., least precise) parameterizations. Similar compar-
isons can be made for other particle sizes, as well as between
the different LUCs. For example, the uncertainties associated
with dp = 0.05 µm are greater for the PZ10 parameterization
for deciduous forest as compared to grass (0.20 > 0.13).

Comparison of the normalized uncertainties in modeled
Vd over smooth surfaces (i.e., water and ice/snow) also re-
veals interesting findings. For example, for dp = 0.5 µm, the
normalized uncertainties over water surfaces for the Z01,
PZ10, KS12, and ZH14 parameterizations are 0.20, 0.00,
0.50, and 0.17, respectively. These results suggest that the
PZ10 parameterization is the least uncertain (i.e., most pre-
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Figure 3. Comparison of the simulated uncertainties in the modeled dry deposition velocities as a function of particle size in five parameter-
izations for five LUCs.

cise), whereas the KS12 is the most uncertain (i.e., least
precise) parameterization for accumulation mode particles.
Over ice/snow surfaces, with dp = 0.005 µm, both the Z01
and ZH14 parameterizations have large uncertainties (nor-
malized uncertainties are 0.18 and 0.17). In contrast, PZ10 is
the most precise parameterization with close to zero normal-
ized uncertainty value.

The normalized uncertainties presented in Table 10 also
reveal interesting findings about the relative magnitude of
imprecision for a given particle size on various LUCs by
one parameterization. For example, with dp = 0.005 µm, the
range in normalized uncertainties varies from 0.18 to 0.20

and 0.09 to 0.20 for all the five LUCs for the Z01 and KS12
parameterizations, respectively.

Figure 3a–e show the relative comparison between uncer-
tainties in modeled Vd by five parameterization for seven par-
ticle sizes across five LUCs. For LUC grass, Fig. 3a shows
that the uncertainties in the Z01 and ZH14 parameteriza-
tions show nearly identical trends, which are relatively nar-
row. That is, the uncertainties for particle sizes from 0.005 to
2.5 µm varied from 12 to 22 and 11 to 20 % in the Z01 and
ZH14 parameterizations, respectively. In contrast, uncertain-
ties in the PZ10 and KS12 parameterizations exhibit large
dispersion (i.e., uncertainty ranges from ∼ 0 to 13 % in the

www.geosci-model-dev.net/10/3861/2017/ Geosci. Model Dev., 10, 3861–3888, 2017
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PZ10 and ∼ 0 to 14 % in the KS12 parameterizations). The
largest uncertainties in the simulated Vd are associated with
the ZS14 parameterization, in which the range of uncertainty
varied from ∼ 0 to 34 % for the seven particle sizes. We note
that the minimum Vd produced by the KS12 parameteriza-
tion is at dp = 0.5 µm for grass, coniferous and deciduous
forest, and ice/snow surfaces, which can be confirmed from
Fig. 3a–c and e. In addition, Fig. 3d–e show that the posi-
tion of this minimum Vd in the PZ10 parameterization ranged
from dp = 0.5 to 1.0 µm for water and ice/snow surfaces.

Similar comparison can be made to evaluate the relative
magnitude of the uncertainties in the modeled Vd predicted
by the parameterizations over other LUCs from Fig. 3b–e.
In Fig. 3b, uncertainties in modeled Vd for coniferous forest
ranged from 11 to 20, 8 to 15, ∼ 0 to 21, and 13 to 17 % in
the Z01, PZ10, KS12, and ZH14 parameterizations, respec-
tively. In Fig. 3c, uncertainties in modeled Vd for deciduous
forest ranged from 10 to 21, 20 to 29, ∼ 0 to 21, and 15 to
18 % in the Z01, PZ10, KS12, and ZH14 parameterizations,
respectively. In Fig. 3d, uncertainties in modeled Vd for water
surfaces ranged from 11 to 21,∼ 0 to 25, 18, 14 to 18, and 18
to 36 % in the Z01, PZ10, KS12, ZH14, and ZS14 parame-
terizations, respectively. In Fig. 3e, uncertainties in modeled
Vd for ice/snow surfaces ranged from 14 to 30, ∼ 0 to 8, ∼ 0
to 28, and 13 to 17 % in the Z01, PZ10, KS12, and ZH14
parameterizations, respectively.

4.3 Sensitivity analysis results: Sobol’ first-order
sensitivity index

For Sobol’ first-order sensitivity analysis, five particle sizes
(i.e., dp = 0.001, 0.01, 0.1, 1.0, and 10 µm) were selected.
A sample size (n) of 100 000 was used for model evaluations
for each of the five particle sizes. To assess the confidence in-
tervals for the first-order Sobol’ sensitivity index, bootstrap-
ping resampling was used. In the bootstrapping method, the
n samples used for the sensitivity simulations were sampled
1000 times with replacement. In the following sections, the
results from the Sobol’ sensitivity analysis and evolution of
the parameter rankings are presented.

The Sobol’ sensitivity analysis performed here is used to
achieve a ranking of the model input parameters. The ranking
of the parameters from most to least sensitive of the five par-
ticle sizes for the five parameterizations is shown in Table 11.
Tables S1–S5 in the Supplement show the first-order Sobol’
indices of the various input parameters used in five dry de-
position parameterizations for five LUCs. In these tables, the
particle-size-dependent first-order Sobol’ index (Si) for dif-
ferent model input parameters is presented with 95 % confi-
dence intervals (CIs) obtained by bootstrap sampling. For ex-
ample, the results of the first-order Sobol’ indices for the Z01
parameterization on five LUCs are presented in Table S1. It
is important to note that the number of parameters tested for
Sobol’ analysis varied between different LUCs, mainly be-
cause the number of parameters required for modeling Vd

for one LUC may be greater or smaller compared to another
LUC.

As shown in Table S1, for the Z01 parameterization on
grass, the importance of the most influential parameters on
the modeled dry deposition velocities for five particles sizes
can be compared using the corresponding Si values of the
model input parameters (i=RH, ρ, LO, u∗, etc.). For exam-
ple, with dp = 0.001 µm, it can be clearly seen that the u∗ is
by far the single most sensitive parameter with an Si value
of 0.918, which indicates that 91.8 % of the variation in the
modeled Vd can be attributed to variations in u∗. The other
parameters that have significant effect on the modeled Vd are
z0 and LO. These two parameters have Si values of 0.044
and 0.009, respectively. As compared to the first-order Sobol’
value of u∗, these values are significantly smaller; however,
the lower limits of the corresponding 95 % confidence inter-
vals for z0 and LO are greater than zero, indicating that they
have a significant effect on the modeled velocities. The Si
values for the other two parameters, RH and particle ρ, were
approximately zero for dp = 0.001 µm (Table S1) and indi-
cate that these variables have no influence on the modeled
Vd.

Comparison between the first-order Sobol’ indices for dif-
ferent particle sizes for grass shows strong variations for
certain input parameters, which reveals interesting findings
about the relative importance (from the most to the least) of
the model input parameters to the modeled dry Vd. For ex-
ample, as seen from Table S1, as dp increases from 0.001 to
10 µm, Si values of u∗ decrease from 0.918 to 0.245, which
indicates that deposition of coarse particles is not strongly
influenced by variations in friction velocity. From Table S1
it is also seen that parameters that influence particle prop-
erties (i.e., RH and ρP) have higher Si values for the coarse
particles as compared to the fine or accumulation mode parti-
cles. Similar comparisons between size-dependent behavior
of parameter sensitivity for other rough surfaces (i.e., conif-
erous and deciduous forests) can be made using the Si values
reported in Table S1.

The results of the first-order Sobol’ indices for the Z01 pa-
rameterization on two smooth surfaces (water and ice/snow)
are also presented in Table S1. Over liquid water surfaces,
variation in u∗ values has the largest influence modeled Vd
for dp = 0.001 to 10.0 µm. As is seen from Table S1, the Si
values of u∗ can alone explain 98.3–99.5 % of the variations
in modeled Vd for particle sizes up to fine mode (i.e., 0.001–
0.01 µm). For coarse mode particles (e.g., dp = 10 µm), u∗
is also the most influential parameter, contributing approxi-
mately 56 % of the total variation in modeled Vd, while rela-
tive humidity is the second most influential/sensitive parame-
ter with an Si value of 0.393. The influence of u∗ also tends to
dominate the modeled Vd over ice/snow surfaces. This theory
can be confirmed by comparing the size-dependent Si values
of u∗ shown in Table S1, which suggest that u∗ is the sin-
gle most sensitive parameter (Si = 0.978) for dp = 1.0 µm.
As the particle size increased to 10 µm, RH and u∗ can ex-
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Table 11. Ranking of first-order Sobol’ sensitivity indices for the five dry particle deposition parameterizations.

Land use dp (µm) Z01 PZ10 KS12 ZH14 ZS14
category

Grass 0.001 u∗, z0, LO, (RH, ρP) u∗, LAI, z0, U , LO, (h,
d , RH, ρP)

u∗, (RH, ρP, LAI) u∗, (z0, LO, RH, ρP) U , u∗, (RH, ρP)

0.01 u∗, z0, LO, (RH, ρP) LAI, U , u∗, (LO, h),
(z0, d , RH, ρP)

u∗, (RH, ρP, LAI) u∗, (z0, LO, RH, ρP) U , u∗, (RH, ρP)

0.1 u∗, (z0, LO, RH, ρP) AI, U , d, (u∗, LO, h,
z0, RH, ρP)

u∗, (RH, ρP, LAI) u∗, (z0, LO, RH, ρP) u∗, U , (RH, ρP)

1.0 u∗, ρP , RH, (z0,LO) U , LAI, RH, u∗, LO,
(h, z0, d , ρP)

RH, u∗, ρP, LAI u∗, (z0, LO, RH, ρP) u∗, U , RH, ρP

10 RH, u∗, ρP, (z0, LO) RH, u∗, U , LAI, (ρP,
z0), LO, (h, d)

RH, u∗, LAI, ρP RH, ρP, (u∗, LO, z0) u∗, U , RH, ρP

Coniferous 0.001 u∗, LO, z0, (RH, ρP) u∗, LO, z0, LAI, h, (d, u∗, (RH, ρP, LAI) u∗, LO, (z0, RH, ρP)
forest U , RH, ρP)

0.01 u∗, LO, z0, (RH, ρP) LO, LAI, u∗, U , z0, h,
(d, RH, ρP)

u∗, (RH, ρP, LAI) u∗, LO, (z0, RH, ρP)

0.1 u∗, LO, (z0, RH, ρP) LO, LAI, U , u∗, (d , z0,
h, RH, ρP)

u∗, (RH, ρP, LAI) u∗, (LO, z0, RH, ρP)

1.0 u∗, ρP, RH, (LO, z0) LO, U , LAI, u∗, RH,
(ρP, d, z0, h)

u∗, RH, ρP, LAI u∗, LO, (z0, RH, ρP)

10 RH, u∗, ρP, LO, z0 u∗, LO, RH, z0, (ρP,
U ), (LAI, d , h)

RH, u∗, LAI, ρP RH, u∗, LO, z0, ρP

Deciduous 0.001 u∗, z0, LO, (RH, ρP) LO, u∗, LAI, z0, U , (h, u∗, (RH, ρP, LAI) u∗, LO, (z0, RH, ρP)
forest d , RH, ρP)

0.01 u∗, z0, LO, (RH, ρP) LO, LAI, u∗, U , (z0,
d), (h, RH, ρP)

u∗, (RH, ρP, LAI) u∗, LO, (z0, RH, ρP)

0.1 u∗, z0, (LO, RH, ρP) LO, LAI, U , u∗, d , (z0,
h, RH, ρP)

u∗, (RH, ρP, LAI) u∗, LO, (z0, RH, ρP)

1.0 u∗, ρP, (LO, z0, RH) LO, LAI, U , u∗, RH,
(z0, d), (h, ρP)

RH, ρP, u∗, LAI u∗, LO, (z0, RH, ρP)

10 RH, u∗, ρP, z0, LO LO, RH, u∗, LAI, ρP,
U , z0, (d, h)

RH, ρP, u∗, LAI RH, u∗, LAI, LO, ρP, z0

Water 0.001 u∗, (LO, RH, ρP) u∗, (LO, RH, ρP) u∗, LO, (ρP, RH) u∗, (LO, RH, ρP)
0.01 u∗, (LO, RH, ρP) u∗, (LO, RH, ρP) u∗, LO, (ρP, RH) u∗, (LO, RH, ρP)

0.1 u∗, (LO, RH, ρP) u∗, ρP, (LO, RH) u∗, LO, (ρP, RH) u∗, (LO, RH, ρP)
1.0 u∗, ρP, (RH, LO) RH, ρP, (u∗, LO) ρP, u∗, (RH, L) u∗, (LO, RH, ρP)
10 u∗, RH, (ρP, LO) RH, ρP, (u∗, LO) ρP, u∗, LO, RH u∗, RH, (LO, ρP)

Ice/snow 0.001 u∗, LO, (z0, RH, ρP) u∗, (LO, z0, RH, ρP) u∗, RH, ρP u∗, (LO, z0, RH, ρP)
0.01 u∗, z0, LO, (RH, ρP) u∗, (LO, z0, RH, ρP) u∗, RH, ρP u∗, (LO, z0, RH, ρP)

0.1 u∗, (LO, z0, RH, ρP) u∗, (LO, z0, RH, ρP) u∗, RH, ρP u∗, (LO, z0, RH, ρP)
1.0 u∗, (LO, z0, RH, ρP) RH, ρP, (z0, LO, z0) u∗, RH, ρP u∗, (LO, z0, RH, ρP)
10 u∗, RH, (ρP, LO, z0) RH, ρP, (z0, LO, z0) RH, u∗, ρP u∗, RH, (z0, LO, ρP)

Note that the ranking of the parameters is from most sensitive to least sensitive. Parameters within the parentheses have identical Sobol’ first-order indices.

plain 92.7 % of the total variation in modeled Vd in the Z01
parameterization.

The results of the first-order Sobol’ indices for the PZ10
parameterization on five LUCs are presented in Table S2. The
size-dependent Si values on coniferous forest can be com-
pared here to elucidate the contribution of different input pa-
rameters on the modeled Vd. It can be noted that, on rough
surfaces, the PZ10 parameterization was tested for the great-
est number of input parameters (i.e., nine) among the five
parameterizations. Some canopy properties such as h, d , and
LAI, and meteorological properties such as U were tested

for their influence on modeled Vd in addition to those pa-
rameters that were tested for the rough surfaces in the Z01
parameterization. As seen from Table S2, for coniferous for-
est, for dp = 0.001 µm, u∗ and LO are the two most influen-
tial parameters (Si values of 0.492 and 0.462, respectively).
Although LAI is not the most influential parameter for the
range of dp tested here, its influence on the overall variability
in the modeled Vd increases from 0.5 to 31.3 % as particle
size increases from 0.001 to 0.1 µm. Similarly, wind speed
tends to show an increasing influence as dp increases from
0.001 to 1.0 µm (overall contribution of U in the variability
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in Vd shows an increase from 0.1 to 27.7 %). For coarse par-
ticles (i.e., dp = 10 µm), u∗ and LO are the two most influ-
ential parameters with Si values of 0.372 and 0.350, respec-
tively. Together with RH, the three parameters can explain
92 % of the variation in the modeled Vd. Results from the
first-order Sobol’ indices for the other LUCs for the PZ10
parameterization presented in Table S2 can be explained in
a manner similar to that used to explain the contribution of
the most sensitive parameters to the modeled dry deposition
velocities. For the water surface, u∗ is the most influential
parameter for dp = 0.001 µm as 99.4 % of the total variance
on the modeled Vd is attributed to its variability. Indeed, for
particle sizes up to 0.1 µm, the u∗ itself is most sensitive pa-
rameter. As seen from Table 11, RH becomes the most in-
fluential model parameter for dp = 1.0 and 10.0 µm, which
alone contribute to 69.5 and 95.6 % of the total variabilities
in the modeled Vd, respectively.

Table S3 shows the first-order Sobol’ indices for the KS12
parameterization on five LUCs. For brevity, the results of
the first-order sensitivity indices for deciduous forest are dis-
cussed herein. It is seen that u∗ is the single most influen-
tial parameter for dp = 0.001 to 0.1 µm (e.g., total contribu-
tion on the modeled Vd attributable to u∗ ranges from 94.4 to
96.7 %). For dp = 1.0 and 10 µm, RH is the most influential
parameter with Si values of 0.629 and 0.934, respectively.

Table S4 shows the first-order Sobol’ indices for the ZH14
parameterization on five LUCs. The results show a strong
influence of u∗ on the modeled Vd. As shown in Table S4,
the Si values alone can explain nearly 100 % of the variation
in the modeled Vd for dp = 0.001 to 1.0 µm. For large parti-
cles (e.g., dp = 10 µm), RH is the most influential parameter;
however, the contributions of other parameters as listed in
Table S4 vary with regard to changes in LUCs.

5 Discussion

The accuracy of the parameterizations should be interpreted
within the context of the field measurements used in this
study assuming that they were accurate. In addition, the in-
tercomparison of the parameterizations’ accuracy is subject
to uncertainties with regard to the assumed values of miss-
ing meteorological parameters, particle properties, or sur-
face features. Evidently, the normalized mean bias factors
obtained using the ensemble approach are a useful measure
to intercompare the parameterizations’ performance against
a subset of field measurements for a given LUC. Extending
the comparison of the normalized mean bias factors across
the five LUCs for the five parameterizations investigated in
this study provides a relative assessment of their accuracy.
However, the ZH14 parameterization is most accurate for all
parameterizations except coniferous forest, where it is a close
second to the KS12 parameterization.

For rough surfaces, our results suggest that ZH14 is the
most accurate parameterization for grass and deciduous for-

est, and it is the second most accurate parameterization for
coniferous forest. In contrast, KS12, PZ10, and ZS14 are the
least accurate parameterizations for grass, coniferous, and
deciduous forests, respectively. It is interesting that in most
cases the models underpredicted the measured dry deposition
velocities (negative bias factors in Tables 4–8). Indeed, for
grass, except for the Z01 parameterization, the other four pa-
rameterizations underpredicted the measured Vd by factors of
1.54 to 10.37 (BNMBF varied from−0.54 to−9.37). With re-
gard to deciduous and coniferous forests, all of the five mod-
els (from the most to the least accurate: ZH14, PZ10, KS12,
Z01, and ZS14; KS12, ZH14, Z01, ZS14, and PZ10) under-
predicted the measured Vd by factors of 4.75 to 11.93, and
2.75 to 4.93, respectively.

A direct quantitative comparison of the accuracy of the
five parameterizations with those reported in other stud-
ies is impossible because the metric used in the present
study (BNMBF) is not commonly used to evaluate the accu-
racy of the dry deposition models. However, qualitatively,
our findings regarding the PZ10 performance for conifer-
ous forests are in accordance with those reported by Petroff
and Zhang (2010). They reported that the PZ10 parameteri-
zation underpredicted the measured deposition velocities for
the subset of observations that we also investigated for conif-
erous forest – Lamaud et al. (1994), Gallagher et al. (1997),
Buzorious et al. (2000), Gaman et al. (2004) – and overpre-
dicted for Grönholm et al. (2009).

The accuracy results over smooth surfaces suggest that,
for the water surface, the best agreement between the mea-
sured and modeled Vd was found for the ZH14 parameter-
ization. Overall, the accuracy ranking from best to worst
is as follows: ZH14, Z01, KS12, PZ10, and ZS14. Over
ice/snow surface, the results suggest that the ZH14 is the
most accurate parameterization, and PZ10 is the least ac-
curate. Qualitatively, this finding is consistent with Petroff
and Zhang (2010), who reported that their model signif-
icantly underestimated the measured deposition velocities
over ice/snow surface for the following studies: Ibrahim et
al. (1983), Duan et al. (1988), Nilsson and Rannik (2001),
and Contini et al. (2010), which were also investigated in
the present study. We also note that the Z01 parameteri-
zation overestimated the measured Vd from the aforemen-
tioned studies. This finding is consistent with Petroff and
Zhang (2010), as they compared their model with Z01 over
the ice/snow surface. One possible explanation for a large
discrepancy between modeled and measured Vd by PZ10 is
an incorrect magnitude of the drift velocity applied, corre-
sponding to phoretic effects on ice and snow.

Collectively for both rough and smooth surfaces, it is
found that the ZH14 scheme is the most accurate for these
LUCs: grass, deciduous forest, water, and ice/snow surfaces.
KS12 performed slightly better for coniferous forest only.
The performance of the PZ10 scheme could be viewed as
moderate. This finding is interesting considering that the
ZH14 is the simplest resistance-based scheme of the five pa-
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rameterizations. We emphasize that Z01 and ZH14 param-
eterizations share similar structural features, but simplifica-
tions of the particle collection processes by constant values
by ZH14 (see Eqs. 46–50) could produce better agreement.
In addition, we note that the KS12 parameterization is based
exclusively on wind tunnel measurements and its perfor-
mance over forest canopies is not satisfactory, as reported by
the model developers Kouznetsov and Sofiev (2012). How-
ever, we find that KS12 performed the best over coniferous
forests with the nine studies used in this research. However,
Kouznetsov and Sofiev (2012) did not use the same subset of
studies to evaluate the model performance as we used.

Given the complex nature and incomplete knowledge of
the dry deposition process, it is important to account for the
uncertainties in the modeled deposition velocities in atmo-
spheric transport models (Petroff and Zhang, 2010; Zhang
et al., 2012). Although there have been many dry deposi-
tion models developed over the years, the information on
the model output uncertainties is meager and not up to date.
To assert uncertainty on the modeled dry deposition veloci-
ties, Gould and Davidson (1992) adopted a stepwise uncer-
tainty test of Slinn’s (1982) model. However, in reality, the
model parameters are subject to simultaneous variability, and
a OAT test cannot adequately propagate the error to the over-
all model outputs. This limitation was partially overcome by
Ruijgrok (1992), who performed a probabilistic uncertainty
test of Slinn’s model.

The Monte Carlo uncertainty analysis performed in this
study assumes that in the five parameterizations all the major
physical processes (e.g., turbulent diffusion, Brownian dif-
fusion, impaction, interception, and gravitational settling) of
dry deposition are accounted for satisfactorily. Thus, the un-
certainty analysis conforms to the uncertainties in the model
input variables and their overall contribution to the propa-
gated uncertainties in the modeled dry deposition velocities.
Additional uncertainties in the modeled deposition velocities
may arise from inadequate model formulation and/or inap-
propriate use of certain micrometeorological parameters. For
example, in dry deposition models (such as PZ10), d and z0
are often calculated as a fraction of h and are often taken
as d ≈ 2h/3 and z0 ≈ 0.1h. These expressions are valid for
dense canopies (Katul et al., 2010). If the leaf area density is
highly skewed or shows a bimodal distribution, such approx-
imations cannot be used (Katul et al., 2010). In addition, the
parameter values of d and z0 are subject to large uncertainty
and are very difficult to measure in urban areas (Cherin et
al., 2015). Therefore, caution must be taken when using con-
stant d and z0 values from lookup tables. Also, current de-
position models do not consider terrain complexity in their
formulations. Hicks (2008) argued that conventional use of
d and z0 for non-flat terrain such as mountains is not appro-
priate for modeling deposition on complex terrain. In addi-
tion, experimentally derived values of d and z0 often repre-
sent local characteristics. Thus, it poses a challenge to scale
those up in a model grid cell (Schaudt and Dickinson, 2000)

in atmospheric transport models. Using remote sensing, ro-
bust scaling of these parameter values is achieved, which
could be used to acquire representative values in a model
grid cell (Tian et al., 2011). However, addressing the issue
of a model’s structural uncertainty in a detailed manner was
outside the scope of this paper.

The values of the eight model parameters, covering four
meteorological (U , u∗, LO, and RH) and four canopy mor-
phological (z0, d , h, and LAI) properties, used in the Monte
Carlo simulations were assumed to be uniformly distributed
because their true distributions were unknown. It is empha-
sized that these parameters are not all necessarily indepen-
dent; z0 and d are functions of the surface characteristics
(Zhang and Shao, 2014; Shao and Yang, 2005, 2008). Con-
sidering these underlying assumptions, the uncertainties in
modeled Vd reported in this paper should be viewed as the
effect of the chosen parameter PDFs on the output uncer-
tainty. The uncertainty bounds (i.e., the central 90 % values)
reported in Table 9 could be treated as a metric of the qual-
ity of the modeled outputs. The normalized uncertainties re-
ported in this study are a useful indicator to assess the overall
performance of a model for four particle modes (seven parti-
cle sizes) across five LUCs.

We applied Sobol’ sensitivity analysis to identify the most
influential parameter(s) of the five parameterizations. Param-
eter rankings achieved using the Sobol’ first-order indices for
different models provide a robust evaluation of the models’
sensitivity by varying a set of input parameters within their
plausible ranges. It is emphasized that a local sensitivity anal-
ysis such as OAT could lead to incomplete or misleading in-
ference of the parameter sensitivity on the model’s output
because assumptions of model linearity are not always jus-
tified for dry deposition parameterizations due to their com-
plex formulations.

The Sobol’ sensitivity rankings presented in Table 11 can
be used for intercomparison between models’ parameter sen-
sitivity. Over rough surfaces, for nucleation size particles
(e.g., dp = 0.001 µm), u∗ is the most sensitive parameter for
Z01, PZ10, KS12, and ZH14 parameterizations. As particle
size increases from 0.001 to 1.0 µm, except for the PZ10
scheme and for 1.0 µm for grass in KS12 scheme, u∗ re-
mains the most influential parameter. This finding is in accor-
dance with previous studies (Zhang et al., 2001; Zhang and
He, 2014) that show that dry deposition velocities for atmo-
spheric particles are greatly influenced by friction velocity.
We note that, in the PZ10 scheme, LAI and LO are the two
most commonly found sensitive parameters for dp = 0.001
to 1.0 µm for rough surfaces. As seen from the parameter
rankings (Table 11), for dp = 10 µm in the Z01, PZ10, KS12,
ZH14 schemes, RH is the most influential factor. We postu-
late that with particle growth, high humidity may have a sig-
nificant effect on coarse mode particles, and as a result, other
model input parameters become less sensitive. The parame-
ter ranking of the PZ10 scheme for deciduous forest shows
thatLO is the most influential parameter. Similarly, for conif-
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erous forest, LO is found to be one of the most sensitive
parameters for most particle sizes. One possible reason for
this finding could be the interdependency of the particle mix-
ing length parameter and LO in the PZ10 scheme. Indeed,
the mixing length indirectly relates to particle collection ef-
ficiencies in the PZ10 parameterization (see Eqs. 18, 25, and
26). The rankings of the Z01 and ZH14 parameters are nearly
identical for rough and smooth surfaces. This finding is not
surprising given that these two parameterizations were devel-
oped by applying similar assumptions.

In general, dry deposition parameterizations developed
for different particle size ranges and surfaces vary widely
in terms of their complexity in model structure. The com-
plexity in their numerical formulations often depends on the
purpose (e.g., operational or research) of the model devel-
opment (Petroff et al., 2008a). Comparing two previously
developed one-dimensional aerosol deposition models for
broadleaf and coniferous canopies (see details in Petroff et
al., 2008b, 2009) with the PZ10 parameterization, Petroff and
Zhang (2010) argued that the mathematical formulations in
those models are too complex and require numerous input
parameters for implementation in aerosol transport models.
Following this hypothesis, we attempt to qualitatively evalu-
ate the relative complexity of the five dry deposition param-
eterizations tested in this study for incorporation into atmo-
spheric transport models.

Of the five parameterizations, we note that the model
structure of the PZ10 is relatively more complex than that
of the Z01, ZH14, and ZS14 parameterizations. The com-
plexity of the KS12 parameterization tends to be different by
a large degree between rough (i.e., vegetative canopies and
snow) and smooth (i.e., water) surfaces. The ZS14 formula-
tion (Eqs. 51–63) is of comparable complexity to the rough
surface formulation in the KS12 parameterization (Eqs. 35–
45), and these parameterizations can be viewed as moder-
ately complex. The formulation of the Z01 parameterization
can be viewed as moderately complex as well. In this param-
eterization, three processes (Brownian diffusion, intercep-
tion, and impaction) were parameterized using Eqs. (8)–(14)
to describe the particle deposition at the collection surface.
We claim that the KS12 parameterization for smooth sur-
faces is the most complex of the five models. This is mainly
because it requires solving the dimensionless dry deposition
velocity profiles over smooth surfaces using an analytical ap-
proach, which can be complex and computationally expen-
sive.

A direct qualitative comparison of the relative complexi-
ties of the major process terms in the PZ10 and Z01 param-
eterizations is possible because both of these parameteriza-
tions are resistance based (i.e., expressions of Vd in Eqs. 2
and 16 are of similar forms). It is evident from Eqs. (19)–(31)
that the formulations in the PZ10 parameterization to com-
pute the three surface collection process terms are relatively
complex as compared to those in the Z01 parameterization.
In the ZH14 parameterization (a resistance-based scheme

as well), these process terms are not explicitly parameter-
ized. Presumably, by incorporating a large number of LUC-
dependent constants to compute surface deposition veloc-
ity using Eqs. (46)–(50), simplifications were made possible
to the ZH14 parameterization. The use of fitting parameters
to account for poorly understood dry deposition processes
in parameterizations is not uncommon. Due to the complex
nature and inadequate understanding of the particle collec-
tion processes to leaf surfaces, suggestions were made to
treat particle deposition on vegetative surfaces in a simplified
manner using empirically derived fitting parameters (Petroff
et al., 2008a). Consequently, Petroff and Zhang (2010) also
introduced a large number of artificial parameters to account
for characteristic length and orientation of the canopy obsta-
cle, and different LUCs to parameterize the particle collec-
tion efficiencies (e.g., due to Brownian diffusion, intercep-
tion, turbulent and inertial impaction). Based on these con-
siderations and those in the previous paragraph, we claim that
the ZH14 is the simplest of the five parameterizations.

6 Conclusions

In terms of overall performance for incorporation in atmo-
spheric transport models, we suggest that parameterization
accuracy and uncertainty should be considered jointly, while,
based on our findings, sensitivity of the model input parame-
ters should be treated separately for each dry deposition pa-
rameterization. The paper presents a comprehensive evalua-
tion of the performance of five parameterizations in terms of
their accuracy, model output uncertainty, and parameter sen-
sitivity. Based on the results, it is evident that the ZH14 pa-
rameterization is the most accurate for four of the five LUCs
(grass, deciduous forest, water, and ice/snow surfaces) and
second most accurate for the fifth LUC (coniferous forest).
Of the five parameterizations, the uncertainty range for the
ZH14 (11–20 %) has the lowest upper bound across the five
LUCs for particle size ranging from 0.005 to 2.5 µm. In terms
of the lower bound of the uncertainty range, the ZH14 is
second to the Z01 (10–30 %) parameterization. We demon-
strated that the Sobol’ sensitivity analysis can be successfully
applied to dry deposition models to rank the input parame-
ters by taking into account the complex interactions between
them. One could argue that, if the different models exhibited
greatest sensitivities to different parameters, and those pa-
rameters were more uncertain, the models exhibiting great-
est sensitivity to the least certain parameters would be the
most uncertain. In this way, sensitivity plays a potential role
in determining which model is better. However, because our
results showed that all models were most sensitive to u∗, or,
at large size, RH, sensitivity does not end up playing a role
in assigning which model is best. We also note that accurate
measurement of u∗ is extremely challenging (Andreas, 1992;
Weber, 1999), and there exists ambiguity in its definition in
boundary-layer meteorology (Weber, 1999).
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The large dispersion in the parameterizations’ accuracy
may indicate that despite considerable efforts in developing
sophisticated process-based dry deposition models, there re-
main major gaps in our understanding of the dry deposition
process. Another possible explanation for the large disper-
sion may be that it is significantly caused by measurement
uncertainties, which were not addressed in this paper. How-
ever, intervariability in modeled deposition velocities is not
uncommon, as pointed out by Ruijgrok et al. (1995) in an in-
tercomparison study of several earlier dry deposition models.
We emphasize that the accuracy results presented in this pa-
per should be discussed in terms of the locations in which the
parameterization accuracy has been evaluated against mea-
surements for the five LUCs (Table 1; Fig. 1).

The results from the uncertainty analysis using the Monte
Carlo simulations on the size-segregated particles should be
of interest to atmospheric transport modelers as well as to
the scientific community interested in quantifying the uncer-
tainty bounds in the atmospheric deposition fluxes of pol-
lutants to ecosystems using concentration data from moni-
toring stations. This is because, until now, uncertainties in
modeled Vd for size-segregated particles for a suite of cur-
rently available dry deposition parameterizations have been
unavailable. We stress that future work on probabilistic un-
certainty analysis should focus on quantifying uncertainties
for additional LUCs than those covered in this study. One of
the major limitations of our uncertainty analysis approach is
the assumption of uniform distribution of all imprecise model
input parameters. To address this limitation, accurate infor-
mation on the input parameter PDFs is needed.

With the help of field observations, and improved theo-
retical knowledge of dry deposition, the Sobol’ parameter
rankings could be used to fine-tune dry deposition models
to better account for processes that are currently lacking or
poorly parameterized. Future work should focus on estimat-
ing higher-order (i.e., second-order and total-order) Sobol’
indices. Such indices would be useful for model developers
interested in understanding the joint influence of multiple in-
put parameters on the modeled deposition velocities.

Based on the qualitative evaluation of relative complex-
ity of the five parameterizations, we suggest that the model
structure of the ZH14 parameterization is the least complex.
After reviewing over 100 air quality models, Kouznetsov and
Sofiev (2012) reported that resistance-based approaches are
extensively implemented in most of those models. Thus, in
practice, it may be preferable to use a relatively simple pa-
rameterization over a complex (and potentially computation-
ally expensive) one, if the accuracy and uncertainty of the
model justify it. Based on these criteria (i.e., accuracy, uncer-
tainty, and complexity), we propose that, of the five parame-
terizations we tested, the ZH14 parameterization is currently
superior for incorporation into atmospheric transport models.
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distributed, and reproduced for all non-commercial use under the
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provided the original work is properly cited.
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