3,926 research outputs found

    To what extent is Gluon Confinement an empirical fact?

    Get PDF
    Experimental verifications of Confinement in hadron physics have established the absence of charges with a fraction of the electron's charge by studying the energy deposited in ionization tracks at high energies, and performing Millikan experiments with charged droplets at rest. These experiments test only the absence of particles with fractional charge in the asymptotic spectrum, and thus "Quark" Confinement. However what theory suggests is that Color is confined, that is, all asymptotic particles are color singlets. Since QCD is a non-Abelian theory, the gluon force carriers (indirectly revealed in hadron jets) are colored. We empirically examine what can be said about Gluon Confinement based on the lack of detection of appropriate events, aiming at an upper bound for high-energy free-gluon production.Comment: 14 pages, 12 figures, version accepted at Few Body Physic

    QCD Rescattering and High Energy Two-Body Photodisintegration of the Deuteron

    Get PDF
    Photon absorption by a quark in one nucleon followed by its high momentum transfer interaction with a quark in the other may produce two final-state nucleons with high relative momentum. We sum the relevant quark rescattering diagrams, to show that the scattering amplitude depends on a convolution between the large angle pnpn scattering amplitude, the hard photon-quark interaction vertex and the low-momentum deuteron wave function. The computed absolute values of the cross section are in reasonable agreement with the data.Comment: 4 pages, revised version to be published in Phys. Rev. Let

    Dilepton Production in Nucleon-Nucleon Reactions With and Without Hadronic Inelasticities

    Full text link
    We calculate elementary proton-proton and neutron-proton bremsstrahlung and their contribution to the e+ee^+e^- invariant mass distribution. At 4.9 GeV, the proton-proton contribution is larger than neutron-proton, but it is small compared to recent data. We then make a first calculation of bremsstrahlung in nucleon-nucleon reactions with multi-hadron final states. Again at 4.9 GeV, the many-body bremsstrahlung is larger than simple nucleon-nucleon bremsstrahlung by more than an order of magnitude in the low-mass region. When the bremsstrahlung contributions are summed with Dalitz decay of the η\eta, radiative decay of the Δ\Delta and from two-pion annihilation, the result matches recent high statistics proton-proton data from the Dilepton Spectrometer collaboration.Comment: 1+17 pages plus 11 PostScript figures uuencoded and appended, McGill/93-9, TPI-MINN-93/18-

    Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli

    Get PDF
    Behavioral responses to painful stimuli require peripheral sensory neurons called nociceptors. Electrophysiological studies show that most C-fiber nociceptors are polymodal (i.e., respond to multiple noxious stimulus modalities, such as mechanical and thermal); nevertheless, these stimuli are perceived as distinct. Therefore, it is believed that discrimination among these modalities only occurs at spinal or supraspinal levels of processing. Here, we provide evidence to the contrary. Genetic ablation in adulthood of unmyelinated sensory neurons expressing the G protein-coupled receptor Mrgprd reduces behavioral sensitivity to noxious mechanical stimuli but not to heat or cold stimuli. Conversely, pharmacological ablation of the central branches of TRPV1+ nociceptors, which constitute a nonoverlapping population, selectively abolishes noxious heat pain sensitivity. Combined elimination of both populations yielded an additive phenotype with no additional behavioral deficits, ruling out a redundant contribution of these populations to heat and mechanical pain sensitivity. This double-dissociation suggests that the brain can distinguish different noxious stimulus modalities from the earliest stages of sensory processing

    Is the Top Quark Really Heavier than the WW Boson?

    Full text link
    Scalar induced top decays may drastically suppress B(tν+jet)B(t\to \ell\nu + jet) and still hide the top below MWM_W. The ppˉp\bar p collider experiments should enlarge the scope and study the mtB(tνj)m_t - B(t\to\ell\nu j) plane. Specific model signatures such as tch0cbbˉt\to ch^0\to cb\bar b (multiple high pTp_T bb-jets) and tbH+bcsˉt\to bH^+\to bc\bar s, bτ+νb\tau^+\nu (with $B(t\to b\tau\nu) \ \raisebox{-.5ex}{\rlap{\sim}} \raisebox{.4ex}{<<}\ 1/3)shouldbeexplored.Withoutrulingoutthesepossibilities,isolatedleptonsignalsinthefuturemightactuallybeduetothe4thgeneration) should be explored. Without ruling out these possibilities, isolated lepton signals in the future might actually be due to the 4th generation t^\primeor or b^\prime$ quark, while top quark and toponium physics could still turn up at LEP-II.Comment: 11 pages (RevTex), 3 figures (not included), NTUTH-93-0

    A terrestrial search for dark contents of the vacuum, such as dark energy, using atom interferometry

    Full text link
    We describe the theory and first experimental work on our concept for searching on earth for the presence of dark content of the vacuum (DCV) using atom interferometry. Specifically, we have in mind any DCV that has not yet been detected on a laboratory scale, but might manifest itself as dark energy on the cosmological scale. The experimental method uses two atom interferometers to cancel the effect of earth's gravity and diverse noise sources. It depends upon two assumptions: first, that the DCV possesses some space inhomogeneity in density, and second that it exerts a sufficiently strong non-gravitational force on matter. The motion of the apparatus through the DCV should then lead to an irregular variation in the detected matter-wave phase shift. We discuss the nature of this signal and note the problem of distinguishing it from instrumental noise. We also discuss the relation of our experiment to what might be learned by studying the noise in gravitational wave detectors such as LIGO.The paper concludes with a projection that a future search of this nature might be carried out using an atom interferometer in an orbiting satellite. The apparatus is now being constructed

    Measurement of Dielectric Suppression of Bremsstrahlung

    Full text link
    In 1953, Ter-Mikaelian predicted that the bremsstrahlung of low energy photons in a medium is suppressed because of interactions between the produced photon and the electrons in the medium. This suppression occurs because the emission takes place over on a long distance scale, allowing for destructive interference between different instantaneous photon emission amplitudes. We present here measurements of bremsstrahlung cross sections of 200 keV to 20 MeV photons produced by 8 and 25 GeV electrons in carbon and gold targets. Our data shows that dielectric suppression occurs at the predicted level, reducing the cross section up to 75 percent in our data.Comment: 11 pages, format is postscript file, gzip-ed, uuencode-e

    Bremsstrahlung Suppression due to the LPM and Dielectric Effects in a Variety of Materials

    Get PDF
    The cross section for bremsstrahlung from highly relativistic particles is suppressed due to interference caused by multiple scattering in dense media, and due to photon interactions with the electrons in all materials. We present here a detailed study of bremsstrahlung production of 200 keV to 500 MeV photons from 8 and 25 GeV electrons traversing a variety of target materials. For most targets, we observe the expected suppressions to a good accuracy. We observe that finite thickness effects are important for thin targets.Comment: 52 pages, 13 figures (incorporated in the revtex LaTeX file

    Narrowing the window for millicharged particles by CMB anisotropy

    Full text link
    We calculate the cosmic microwave background (CMB) anisotropy spectrum in models with millicharged particles of electric charge q\sim 10^{-6}-10^{-1} in units of electron charge. We find that a large region of the parameter space for the millicharged particles exists where their effect on the CMB spectrum is similar to the effect of baryons. Using WMAP data on the CMB anisotropy and assuming Big Bang nucleosynthesis value for the baryon abundance we find that only a small fraction of cold dark matter, Omega_{mcp}h_0^2 < 0.007 (at 95% CL), may consists of millicharged particles with the parameters (charge and mass) from this region. This bound significantly narrows the allowed range of the parameters of millicharged particles. In models without paraphoton millicharged particles are now excluded as a dark matter candidate. We also speculate that recent observation of 511 keV gamma-rays from the Galactic bulge may be an indication that a (small) fraction of CDM is comprised of the millicharged particles.Comment: 10 pages, 3 figures; v2: journal version, references adde

    Approximation algorithms for maximally balanced connected graph partition

    Full text link
    Given a simple connected graph G=(V,E)G = (V, E), we seek to partition the vertex set VV into kk non-empty parts such that the subgraph induced by each part is connected, and the partition is maximally balanced in the way that the maximum cardinality of these kk parts is minimized. We refer this problem to as {\em min-max balanced connected graph partition} into kk parts and denote it as {\sc kk-BGP}. The general vertex-weighted version of this problem on trees has been studied since about four decades ago, which admits a linear time exact algorithm; the vertex-weighted {\sc 22-BGP} and {\sc 33-BGP} admit a 5/45/4-approximation and a 3/23/2-approximation, respectively; but no approximability result exists for {\sc kk-BGP} when k4k \ge 4, except a trivial kk-approximation. In this paper, we present another 3/23/2-approximation for our cardinality {\sc 33-BGP} and then extend it to become a k/2k/2-approximation for {\sc kk-BGP}, for any constant k3k \ge 3. Furthermore, for {\sc 44-BGP}, we propose an improved 24/1324/13-approximation. To these purposes, we have designed several local improvement operations, which could be useful for related graph partition problems.Comment: 23 pages, 7 figures, accepted for presentation at COCOA 2019 (Xiamen, China
    corecore