Approximation algorithms for maximally balanced connected graph partition

Abstract

Given a simple connected graph G=(V,E)G = (V, E), we seek to partition the vertex set VV into kk non-empty parts such that the subgraph induced by each part is connected, and the partition is maximally balanced in the way that the maximum cardinality of these kk parts is minimized. We refer this problem to as {\em min-max balanced connected graph partition} into kk parts and denote it as {\sc kk-BGP}. The general vertex-weighted version of this problem on trees has been studied since about four decades ago, which admits a linear time exact algorithm; the vertex-weighted {\sc 22-BGP} and {\sc 33-BGP} admit a 5/45/4-approximation and a 3/23/2-approximation, respectively; but no approximability result exists for {\sc kk-BGP} when k4k \ge 4, except a trivial kk-approximation. In this paper, we present another 3/23/2-approximation for our cardinality {\sc 33-BGP} and then extend it to become a k/2k/2-approximation for {\sc kk-BGP}, for any constant k3k \ge 3. Furthermore, for {\sc 44-BGP}, we propose an improved 24/1324/13-approximation. To these purposes, we have designed several local improvement operations, which could be useful for related graph partition problems.Comment: 23 pages, 7 figures, accepted for presentation at COCOA 2019 (Xiamen, China

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 10/08/2021