5,384 research outputs found
A New Method for Searching for Free Fractional Charge Particles in Bulk Matter
We present a new experimental method for searching for free fractional charge
in bulk matter; this new method derives from the traditional Millikan liquid
drop method, but allows the use of much larger drops, 20 to 100 mm in diameter,
compared to the traditional method that uses drops less than 15 mm in diameter.
These larger drops provide the substantial advantage that it is then much
easier to consistently generate drops containing liquid suspensions of powdered
meteorites and other special minerals. These materials are of great importance
in bulk searches for fractional charge particles that may have been produced in
the early universe.Comment: 17 pages, 5 figures in a singl PDF file (created from WORD Doc.).
Submitted to Review of Scientific Instrument
Narrowing the window for millicharged particles by CMB anisotropy
We calculate the cosmic microwave background (CMB) anisotropy spectrum in
models with millicharged particles of electric charge q\sim 10^{-6}-10^{-1} in
units of electron charge. We find that a large region of the parameter space
for the millicharged particles exists where their effect on the CMB spectrum is
similar to the effect of baryons. Using WMAP data on the CMB anisotropy and
assuming Big Bang nucleosynthesis value for the baryon abundance we find that
only a small fraction of cold dark matter, Omega_{mcp}h_0^2 < 0.007 (at 95%
CL), may consists of millicharged particles with the parameters (charge and
mass) from this region. This bound significantly narrows the allowed range of
the parameters of millicharged particles. In models without paraphoton
millicharged particles are now excluded as a dark matter candidate. We also
speculate that recent observation of 511 keV gamma-rays from the Galactic bulge
may be an indication that a (small) fraction of CDM is comprised of the
millicharged particles.Comment: 10 pages, 3 figures; v2: journal version, references adde
Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli
Behavioral responses to painful stimuli require peripheral sensory neurons called nociceptors. Electrophysiological studies show that most C-fiber nociceptors are polymodal (i.e., respond to multiple noxious stimulus modalities, such as mechanical and thermal); nevertheless, these stimuli are perceived as distinct. Therefore, it is believed that discrimination among these modalities only occurs at spinal or supraspinal levels of processing. Here, we provide evidence to the contrary. Genetic ablation in adulthood of unmyelinated sensory neurons expressing the G protein-coupled receptor Mrgprd reduces behavioral sensitivity to noxious mechanical stimuli but not to heat or cold stimuli. Conversely, pharmacological ablation of the central branches of TRPV1+ nociceptors, which constitute a nonoverlapping population, selectively abolishes noxious heat pain sensitivity. Combined elimination of both populations yielded an additive phenotype with no additional behavioral deficits, ruling out a redundant contribution of these populations to heat and mechanical pain sensitivity. This double-dissociation suggests that the brain can distinguish different noxious stimulus modalities from the earliest stages of sensory processing
The Search for Stable, Massive, Elementary Particles
In this paper we review the experimental and observational searches for
stable, massive, elementary particles other than the electron and proton. The
particles may be neutral, may have unit charge or may have fractional charge.
They may interact through the strong, electromagnetic, weak or gravitational
forces or through some unknown force. The purpose of this review is to provide
a guide for future searches - what is known, what is not known, and what appear
to be the most fruitful areas for new searches. A variety of experimental and
observational methods such as accelerator experiments, cosmic ray studies,
searches for exotic particles in bulk matter and searches using astrophysical
observations is included in this review.Comment: 34 pages, 8 eps figure
Weak Gravity Conjecture and Holographic Dark Energy Model with Interaction and Spatial Curvature
In the paper, we apply the weak gravity conjecture to the holographic
quintessence model of dark energy. Three different holographic dark energy
models are considered: without the interaction in the non-flat universe; with
interaction in the flat universe; with interaction in the non-flat universe. We
find that only in the models with the spatial curvature and interaction term
proportional to the energy density of matter, it is possible for the weak
gravity conjecture to be satisfied.Comment: 14 pages, 7 figures, typographical errors are corrected; conclusin is
unchange
QCD Rescattering and High Energy Two-Body Photodisintegration of the Deuteron
Photon absorption by a quark in one nucleon followed by its high momentum
transfer interaction with a quark in the other may produce two final-state
nucleons with high relative momentum. We sum the relevant quark rescattering
diagrams, to show that the scattering amplitude depends on a convolution
between the large angle scattering amplitude, the hard photon-quark
interaction vertex and the low-momentum deuteron wave function. The computed
absolute values of the cross section are in reasonable agreement with the data.Comment: 4 pages, revised version to be published in Phys. Rev. Let
Charged Scalar Particles and Leptonic Decay
Charged scalar particles introduced in some extensions of the standard model
can induce leptonic decay at tree level. We find that with some charged
SU(2)-singlet scalar particles, like ones introduced in Zee-type models,
leptonic decay width is always smaller than what is predicted by the standard
model, therefore they may offer a natural solution to decay puzzle. To
be more specific, we examine some Zee-type models in detail to see if at the
same time they are acceptable in particle physics, cosmology and astrophysics.
It is shown that decay data do put some constrains on these models.Comment: ICTP Report No. IC/93/31, 12 pages, Latex, one figure is not
included, it is available upon deman
Measurement of Dielectric Suppression of Bremsstrahlung
In 1953, Ter-Mikaelian predicted that the bremsstrahlung of low energy
photons in a medium is suppressed because of interactions between the produced
photon and the electrons in the medium. This suppression occurs because the
emission takes place over on a long distance scale, allowing for destructive
interference between different instantaneous photon emission amplitudes. We
present here measurements of bremsstrahlung cross sections of 200 keV to 20 MeV
photons produced by 8 and 25 GeV electrons in carbon and gold targets. Our data
shows that dielectric suppression occurs at the predicted level, reducing the
cross section up to 75 percent in our data.Comment: 11 pages, format is postscript file, gzip-ed, uuencode-e
Large bulk matter search for fractional charge particles
We have carried out the largest search for stable particles with fractional electric charge, based on an oil drop method that incorporates a horizontal electric field and upward air flow. No evidence for such particles was found, giving a 95%~C.L. upper limit of particles per nucleon on the abundance of fractional charge particles in silicone oil for . Since this is the first use of this new method we describe the advantages and limitations of the method
Big-Bang Nucleosynthesis and Hadronic Decay of Long-Lived Massive Particles
We study the big-bang nucleosynthesis (BBN) with the long-lived exotic
particle, called X. If the lifetime of X is longer than \sim 0.1 sec, its decay
may cause non-thermal nuclear reactions during or after the BBN, altering the
predictions of the standard BBN scenario. We pay particular attention to its
hadronic decay modes and calculate the primordial abundances of the light
elements. Using the result, we derive constraints on the primordial abundance
of X. Compared to the previous studies, we have improved the following points
in our analysis: The JETSET 7.4 Monte Carlo event generator is used to
calculate the spectrum of hadrons produced by the decay of X; The evolution of
the hadronic shower is studied taking account of the details of the energy-loss
processes of the nuclei in the thermal bath; We have used the most recent
observational constraints on the primordial abundances of the light elements;
In order to estimate the uncertainties, we have performed the Monte Carlo
simulation which includes the experimental errors of the cross sections and
transfered energies. We will see that the non-thermal productions of D, He3,
He4 and Li6 provide stringent upper bounds on the primordial abundance of
late-decaying particle, in particular when the hadronic branching ratio of X is
sizable. We apply our results to the gravitino problem, and obtain upper bound
on the reheating temperature after inflation.Comment: 94 pages, 49 figures, to appear in Phys. Rev. D. This is a full
length paper of the preprint astro-ph/040249
- …
