13,347 research outputs found
An experimental study of client-side Spotify peering behaviour
Spotify is a popular music-streaming service which has seen widespread use across Europe. While Spotify’s server-side behaviour has previously been studied, little is known about the client-side behaviour. In this paper, we describe an experimental study where we collect packet headers for Spotify traffic over multiple 24-hour time frames at a client host. Two distinct types of behaviour are observed, when tracks are being downloaded, and when the client is only serving requests from other peers. We also note wide variation in connection lifetimes, as seen in other studies of peer-to-peer systems. These findings are relevant for improving Spotify itself, and for the designers of other hybrid peer-to-peer and server-based distribution architectures
A correlation method to predict the surface pressure distribution on an infinite plate from which a jet is issuing
A correlation method to predict pressures induced on an infinite plate by a jet issuing from the plate into a subsonic free stream was developed. The complete method consists of an analytical method which models the blockage and entrainment properties of the jet and a correlation which accounts for the effects of separation. The method was developed for jet velocity ratios up to ten and for radial distances up to five diameters from the jet. Correlation curves and data comparisons are presented for jets issuing normally from a flat plate with velocity ratios one to twelve. Also, a list of references which deal with jets in a crossflow is presented
Prediction of vortex shedding from circular and noncircular bodies in supersonic flow
An engineering prediction method and associated computer code NOZVTX to predict nose vortex shedding from circular and noncircular bodies in supersonic flow at angles of attack and roll are presented. The body is represented by either a supersonic panel method for noncircular cross sections or line sources and doublets for circular cross sections, and the lee side vortex wake is modeled by discrete vortices in crossflow planes. The three-dimensional steady flow problem is reduced to a two-dimensional, unsteady, separated flow problem for solution. Comparison of measured and predicted surface pressure distributions, flow field surveys, and aerodynamic characteristics is presented for bodies with circular and noncircular cross-sectional shapes
Computer programs to predict induced effects of jets exhausting into a crossflow
A user's manual for two computer programs was developed to predict the induced effects of jets exhausting into a crossflow. Program JETPLT predicts pressures induced on an infinite flat plate by a jet exhausting at angles to the plate and Program JETBOD, in conjunction with a panel code, predicts pressures induced on a body of revolution by a jet exhausting normal to the surface. Both codes use a potential model of the jet and adjacent surface with empirical corrections for the viscous or nonpotential effects. This program manual contains a description of the use of both programs, instructions for preparation of input, descriptions of the output, limitations of the codes, and sample cases. In addition, procedures to extend both codes to include additional empirical correlations are described
Spin-1 effective Hamiltonian with three degenerate orbitals: An application to the case of V_2O_3
Motivated by recent neutron and x-ray observations in V_2O_3, we derive the
effective Hamiltonian in the strong coupling limit of an Hubbard model with
three degenerate t_{2g} states containing two electrons coupled to spin S = 1,
and use it to re-examine the low-temperature ground-state properties of this
compound. An axial trigonal distortion of the cubic states is also taken into
account. Since there are no assumptions about the symmetry properties of the
hopping integrals involved, the resulting spin-orbital Hamiltonian can be
generally applied to any crystallographic configuration of the transition metal
ion giving rise to degenerate t_{2g} orbitals. Specializing to the case of
V_2O_3 we consider the antiferromagnetic insulating phase. We find two
variational regimes, depending on the relative size of the correlation energy
of the vertical pairs and the in-plane interaction energy. The former favors
the formation of stable molecules throughout the crystal, while the latter
tends to break this correlated state. We determine in both cases the minimizing
orbital solutions for various spin configurations, and draw the corresponding
phase diagrams. We find that none of the symmetry-breaking stable phases with
the real spin structure presents an orbital ordering compatible with the
magnetic space group indicated by very recent observations of non-reciprocal
x-ray gyrotropy in V_2O_3. We do however find a compatible solution with very
small excitation energy in two distinct regions of the phase space, which might
turn into the true ground state of V_2O_3 due to the favorable coupling with
the lattice. We illustrate merits and drawbacks of the various solutions and
discuss them in relation to the present experimental evidence.Comment: 36 pages, 19 figure
Reforming a large lecture modern physics course for engineering majors using a PER-based design
We have reformed a large lecture modern physics course for engineering majors
by radically changing both the content and the learning techniques implemented
in lecture and homework. Traditionally this course has been taught in a manner
similar to the equivalent course for physics majors, focusing on mathematical
solutions of abstract problems. Based on interviews with physics and
engineering professors, we developed a syllabus and learning goals focused on
content that was more useful to our actual student population: engineering
majors. The content of this course emphasized reasoning development, model
building, and connections to real world applications. In addition we
implemented a variety of PER-based learning techniques, including peer
instruction, collaborative homework sessions, and interactive simulations. We
have assessed the effectiveness of reforms in this course using pre/post
surveys on both content and beliefs. We have found significant improvements in
both content knowledge and beliefs compared with the same course before
implementing these reforms and a corresponding course for physics majors.Comment: To be published in the Proceedings of the Physics Education Research
Conference 200
Black Holes in Higher-Derivative Gravity
Extensions of Einstein gravity with higher-order derivative terms arise in
string theory and other effective theories, as well as being of interest in
their own right. In this paper we study static black-hole solutions in the
example of Einstein gravity with additional quadratic curvature terms. A
Lichnerowicz-type theorem simplifies the analysis by establishing that they
must have vanishing Ricci scalar curvature. By numerical methods we then
demonstrate the existence of further black-hole solutions over and above the
Schwarzschild solution. We discuss some of their thermodynamic properties, and
show that they obey the first law of thermodynamics.Comment: Typos corrected, discussion added, figure changed. 4 pages, 6 figure
Lichnerowicz Modes and Black Hole Families in Ricci Quadratic Gravity
A new branch of black hole solutions occurs along with the standard
Schwarzschild branch in -dimensional extensions of general relativity
including terms quadratic in the Ricci tensor. The standard and new branches
cross at a point determined by a static negative-eigenvalue eigenfunction of
the Lichnerowicz operator, analogous to the Gross-Perry-Yaffe eigenfunction for
the Schwarzschild solution in standard dimensional general relativity.
This static eigenfunction has two r\^oles: both as a perturbation away from
Schwarzschild along the new black-hole branch and also as a threshold unstable
mode lying at the edge of a domain of Gregory-Laflamme-type instability of the
Schwarzschild solution for small-radius black holes. A thermodynamic analogy
with the Gubser and Mitra conjecture on the relation between quantum
thermodynamic and classical dynamical instabilities leads to a suggestion that
there may be a switch of stability properties between the old and new
black-hole branches for small black holes with radii below the branch crossing
point.Comment: 33 pages, 8 figure
Spherically Symmetric Solutions in Higher-Derivative Gravity
Extensions of Einstein gravity with quadratic curvature terms in the action
arise in most effective theories of quantised gravity, including string theory.
This article explores the set of static, spherically symmetric and
asymptotically flat solutions of this class of theories. An important element
in the analysis is the careful treatment of a Lichnerowicz-type `no-hair'
theorem. From a Frobenius analysis of the asymptotic small-radius behaviour,
the solution space is found to split into three asymptotic families, one of
which contains the classic Schwarzschild solution. These three families are
carefully analysed to determine the corresponding numbers of free parameters in
each. One solution family is capable of arising from coupling to a
distributional shell of matter near the origin; this family can then match on
to an asymptotically flat solution at spatial infinity without encountering a
horizon. Another family, with horizons, contains the Schwarzschild solution but
includes also non-Schwarzschild black holes. The third family of solutions
obtained from the Frobenius analysis is nonsingular and corresponds to `vacuum'
solutions. In addition to the three families identified from near-origin
behaviour, there are solutions that may be identified as `wormholes', which can
match symmetrically on to another sheet of spacetime at finite radius.Comment: 57 pages, 6 figures; version appearing in journal; minor corrections
and clarifications to v
- …