15 research outputs found

    Beat-to-beat vectorcardiographic analysis of ventricular depolarization and repolarization in myocardial infarction

    Get PDF
    OBJECTIVES: Increased beat-to-beat variability in the QT interval has been associated with heart disease and mortality. The purpose of this study was to investigate the beat-to-beat spatial and temporal variations of ventricular depolarization and repolarization in vectorcardiogram (VCG) for characterising myocardial infarction (MI) patients. METHODS: Standard 12-lead ECGs of 84 MI patients (22 f, 63±12 yrs; 62 m, 56±10 yrs) and 69 healthy subjects (17 f, 42±18 yrs; 52 m, 40±13 yrs) were investigated. To extract the beat-to-beat QT intervals, a template-matching algorithm and the singular value decomposition method have been applied to synthesise the ECG data to VCG. Spatial and temporal variations in the QRS complex and T-wave loops were studied by investigating several descriptors (point-to-point distance variability, mean loop length, T-wave morphology dispersion, percentage of loop area, total cosine R-to-T). RESULTS: Point-to-point distance variability of QRS and T-loops (0.13±.04 vs. 0.10±0.04, p<0.0001 and 0.16±.07 vs. 0.13±.06, p<0.05) were significantly larger in the MI group than in the control group. The average T-wave morphology dispersion was significantly higher in the MI group than in the control group (62±8 vs. 38±16, p<.0001). Further, its beat-to-beat variability appeared significantly lower in the MI group than in the control group (12±5 v. 15±6u, p<0.005). Moreover, the average percentage of the T-loop area was found significantly lower in the MI group than the controls (46±17 vs. 55±15, p<.001). Finally, the average and beat-to-beat variability of total cosine R-to-T were not found statistically significant between both groups. CONCLUSIONS: Beat-to-beat assessment of VCG parameters may have diagnostic attributes that might help in identifying MI patients.Muhammad A. Hasan, Derek Abbott and Mathias Baumer

    We should be using nonlinear indices when relating heart-rate dynamics to cognition and mood

    No full text
    Both heart rate (HR) and brain functioning involve the integrated output of a multitude of regulatory mechanisms, that are not quantified adequately by linear approximations such as means and standard deviations. It was therefore considered whether non-linear measures of HR complexity are more strongly associated with cognition and mood. Whilst resting, the inter-beat (R-R) time series of twenty-one males and twenty-four females were measured for five minutes. The data were summarised using time, frequency and nonlinear complexity measures. Attention, memory, reaction times, mood and cortisol levels were assessed. Nonlinear HR indices captured additional information, enabling a greater percentage of the variance in behaviour to be explained. On occasions non-linear indices were related to aspects for behaviour, for example focused attention and cortisol production, when time or frequency indices were not. These effects were sexually dimorphic with HR complexity being more strongly associated with the behaviour of females. It was concluded that nonlinear rather than linear methods of summarizing the HR times series offers a novel way of relating brain functioning and behaviour. It should be considered whether non-linear measures of HR complexity can be used as a biomarker of the integrated functioning of the brain
    corecore