261 research outputs found

    Study of mechanical behavior on single use bags welding under gamma irradiation

    Get PDF
    Since a long time, biopharmaceutical industry utilizes more and more single use plastic bags due to its very easy use (long shelf-lives, mechanical properties), preparation, and storage properties (oxygen and water barriers). These plastic bags are composed of two welded multilayer polymer films. To ensure the function of the closure and the non-contamination from the external environment, welding must answer to several parameters according to norm (“ISO 15747,” 2018) and standard (F02 Committee, n.d.). In this present study, the behavior of weldings on Ethylene Vinyl Acetate (EVA) single use bags under gamma irradiation have been studied. Mechanical tests have been performed at several gamma irradiation doses (from 0 kGy to 270 kGy) and at different location of the bag (Figure 1). The first objective is to study the impact of gamma irradiation dose on the welding mechanical tensile behavior. The second objective is to evaluate the impact of the welding location on the welding tensile properties. Each tensile curve (Figure 2) has been decomposed in 6 characteristic points which were evaluated with Principal Component Analysis (PCA): Ultimate Tensile strength at break (UTS), Ultimate elongation or elongation at break, 1st Yield-Strength (Y1 Strength), 1st Yield-Strain (Y1 Strain), 2nd Yield-Strength (Y2 Strength), 2nd Yield-Strain (Y2 Strain). The study showed that weldings are never impacted during tensile testing: this evaluation reveals that in fine the film cracks before the welding modification. Its function of closure and bag content preservation from external environment is fully achieved whatever the gamma irradiation dose and the welding location. Only the multilayer film on both sides of the welding is altered after 100% elongation strain. The EVA bag showed no degradation up to 115 kGy whereas they become to be altered at 270 kGy. The welding location on EVA bag showed different film mechanical behavior correlated to the polymer film extrusion process orientation. Please click Additional Files below to see the full abstract

    The Eukaryotic Promoter Database (EPD): recent developments

    Get PDF
    The Eukaryotic Promoter Database (EPD) is an annotated non-redundant collection of eukaryotic POL II promoters, for which the transcription start site has been determined experimentally. Access to promoter sequences is provided by pointers to positions in nucleotide sequence entries. The annotation part of an entry includes description of the initiation site mapping data, cross-references to other databases, and bibliographic references. EPD is structured in a way that facilitates dynamic extraction of biologically meaningful promoter subsets for comparative sequence analysis. Recent efforts have focused on exhaustive cross-referencing to the EMBL nucleotide sequence database, and on the improvement of the WWW-based user interfaces and data retrieval mechanisms. EPD can be accessed at http://www.epd.isb-sib.c

    Implantable cardioverter defibrillator therapy for primary prevention of sudden cardiac death in the real world: Main findings from the French multicentre DAI-PP programme (pilot phase)

    Get PDF
    This review summarizes the main findings of the French multicentre DAI-PP pilot programme, and discusses the related clinical and research perspectives. This project included retrospectively (2002–2012 period) more than 5000 subjects with structural heart disease who received an implantable cardioverter defibrillator (ICD) for primary prevention of sudden cardiac death, and were followed for a mean period of 3 years. The pilot phase of the DAI-PP programme has provided valuable information on several practical and clinically relevant aspects of primary prevention ICD implantation in the real-world population, which are summarized in this review. This pilot has led to a prospective evaluation that started in May 2018, assessing ICD therapy in primary and secondary prevention in patients with structural and electrical heart diseases, with remote monitoring follow-up using a dedicated platform. This should further enhance our understanding of sudden cardiac death, to eventually optimize the field of preventative actions

    14-3-3theta Protects against Neurotoxicity in a Cellular Parkinson's Disease Model through Inhibition of the Apoptotic Factor Bax

    Get PDF
    Disruption of 14-3-3 function by alpha-synuclein has been implicated in Parkinson's disease. As 14-3-3s are important regulators of cell death pathways, disruption of 14-3-3s could result in the release of pro-apoptotic factors, such as Bax. We have previously shown that overexpression of 14-3-3θ reduces cell loss in response to rotenone and MPP+ in dopaminergic cell culture and reduces cell loss in transgenic C. elegans that overexpress alpha-synuclein. In this study, we investigate the mechanism for 14-3-3θ's neuroprotection against rotenone toxicity. While 14-3-3s can inhibit many pro-apoptotic factors, we demonstrate that inhibition of one factor in particular, Bax, is important to 14-3-3s' protection against rotenone toxicity in dopaminergic cells. We found that 14-3-3θ overexpression reduced Bax activation and downstream signaling events, including cytochrome C release and caspase 3 activation. Pharmacological inhibition or shRNA knockdown of Bax provided protection against rotenone, comparable to 14-3-3θ's neuroprotective effects. A 14-3-3θ mutant incapable of binding Bax failed to protect against rotenone. These data suggest that 14-3-3θ's neuroprotective effects against rotenone are at least partially mediated by Bax inhibition and point to a potential therapeutic role of 14-3-3s in Parkinson's disease

    PINK1 Is Necessary for Long Term Survival and Mitochondrial Function in Human Dopaminergic Neurons

    Get PDF
    Parkinson's disease (PD) is a common age-related neurodegenerative disease and it is critical to develop models which recapitulate the pathogenic process including the effect of the ageing process. Although the pathogenesis of sporadic PD is unknown, the identification of the mendelian genetic factor PINK1 has provided new mechanistic insights. In order to investigate the role of PINK1 in Parkinson's disease, we studied PINK1 loss of function in human and primary mouse neurons. Using RNAi, we created stable PINK1 knockdown in human dopaminergic neurons differentiated from foetal ventral mesencephalon stem cells, as well as in an immortalised human neuroblastoma cell line. We sought to validate our findings in primary neurons derived from a transgenic PINK1 knockout mouse. For the first time we demonstrate an age dependent neurodegenerative phenotype in human and mouse neurons. PINK1 deficiency leads to reduced long-term viability in human neurons, which die via the mitochondrial apoptosis pathway. Human neurons lacking PINK1 demonstrate features of marked oxidative stress with widespread mitochondrial dysfunction and abnormal mitochondrial morphology. We report that PINK1 plays a neuroprotective role in the mitochondria of mammalian neurons, especially against stress such as staurosporine. In addition we provide evidence that cellular compensatory mechanisms such as mitochondrial biogenesis and upregulation of lysosomal degradation pathways occur in PINK1 deficiency. The phenotypic effects of PINK1 loss-of-function described here in mammalian neurons provides mechanistic insight into the age-related degeneration of nigral dopaminergic neurons seen in PD

    Insufficient OPC migration into demyelinated lesions is a cause of poor remyelination in MS and mouse models

    Get PDF
    Failure of remyelination of multiple sclerosis (MS) lesions contributes to neurodegeneration that correlates with chronic disability in patients. Currently, there are no available treatments to reduce neurodegeneration, but one therapeutic approach to fill this unmet need is to promote remyelination. As many demyelinated MS lesions contain plentiful oligodendrocyte precursor cells (OPCs), but no mature myelinating oligodendrocytes, research has previously concentrated on promoting OPC maturation. However, some MS lesions contain few OPCs, and therefore, remyelination failure may also be secondary to OPC recruitment failure. Here, in a series of MS samples, we determined how many lesions contained few OPCs, and correlated this to pathological subtype and expression of the chemotactic molecules Semaphorin (Sema) 3A and 3F. 37 % of MS lesions contained low numbers of OPCs, and these were mostly chronic active lesions, in which cells expressed Sema3A (chemorepellent). To test the hypothesis that differential Sema3 expression in demyelinated lesions alters OPC recruitment and the efficiency of subsequent remyelination, we used a focal myelinotoxic mouse model of demyelination. Adding recombinant (r)Sema3A (chemorepellent) to demyelinated lesions reduced OPC recruitment and remyelination, whereas the addition of rSema3F (chemoattractant), or use of transgenic mice with reduced Sema3A expression increased OPC recruitment and remyelination. We conclude that some MS lesions fail to remyelinate secondary to reduced OPC recruitment, and that chemotactic molecules are involved in the mechanism, providing a new group of drug targets to improve remyelination, with a specific target in the Sema3A receptor neuropilin-1. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00401-013-1112-y) contains supplementary material, which is available to authorized users

    Involvment of Cytosolic and Mitochondrial GSK-3β in Mitochondrial Dysfunction and Neuronal Cell Death of MPTP/MPP+-Treated Neurons

    Get PDF
    Aberrant mitochondrial function appears to play a central role in dopaminergic neuronal loss in Parkinson's disease (PD). 1-methyl-4-phenylpyridinium iodide (MPP+), the active metabolite of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), is a selective inhibitor of mitochondrial complex I and is widely used in rodent and cell models to elicit neurochemical alterations associated with PD. Recent findings suggest that Glycogen Synthase Kinase-3β (GSK-3β), a critical activator of neuronal apoptosis, is involved in the dopaminergic cell death. In this study, the role of GSK-3β in modulating MPP+-induced mitochondrial dysfunction and neuronal death was examined in vivo, and in two neuronal cell models namely primary cultured and immortalized neurons. In both cell models, MPTP/MPP+ treatment caused cell death associated with time- and concentration-dependent activation of GSK-3β, evidenced by the increased level of the active form of the kinase, i.e. GSK-3β phosphorylated at tyrosine 216 residue. Using immunocytochemistry and subcellular fractionation techniques, we showed that GSK-3β partially localized within mitochondria in both neuronal cell models. Moreover, MPP+ treatment induced a significant decrease of the specific phospho-Tyr216-GSK-3β labeling in mitochondria concomitantly with an increase into the cytosol. Using two distinct fluorescent probes, we showed that MPP+ induced cell death through the depolarization of mitochondrial membrane potential. Inhibition of GSK-3β activity using well-characterized inhibitors, LiCl and kenpaullone, and RNA interference, prevented MPP+-induced cell death by blocking mitochondrial membrane potential changes and subsequent caspase-9 and -3 activation. These results indicate that GSK-3β is a critical mediator of MPTP/MPP+-induced neurotoxicity through its ability to regulate mitochondrial functions. Inhibition of GSK-3β activity might provide protection against mitochondrial stress-induced cell death
    corecore