13 research outputs found

    Multicomponent Domino Synthesis, Anticancer Activity and Molecular Modeling Simulation of Complex Dispirooxindolopyrrolidines

    Get PDF
    A series of spirooxindolopyrrolidine fused N -styrylpiperidone heterocyclic hybrids has been synthesized in excellent yield via a domino multicomponent protocol that involves one-pot three component 1,3-dipolar cycloaddition and concomitant enamine reactions performed in an inexpensive ionic liquid, namely 1-butyl-3-methylimidazolium bromide ([bmim]Br). Compounds thus synthesized were evaluated for their cytotoxicity against U-937 tumor cells. Interestingly; compounds 5i and 5m exhibited a better cytotoxicity than the anticancer drug bleomycin. In ddition; the effect of the synthesized compounds on the nuclear morphology of U937 FaDu cells revealed that treatment with compounds 5a–m led to their apoptotic cell death

    Unveiling the Molecular Signature of High-Temperature Cooking: Gas Chromatography-Mass Spectrometry Profiling of Sucrose and Histidine Reactions and Its Derivatives Induce Necrotic Death on THP1 Immune Cells

    No full text
    High-temperature cooking processes like frying, baking, smoking, or drying can induce chemical transformations in conventional food ingredients, causing deteriorative modifications. These reactions, including hydrolytic, oxidative, and thermal changes, are common and can alter the food’s chemical composition. This study transformed a combination of sucrose and histidine (Su-Hi) through charring or pyrolysis. The GC-MS profiling study showed that when sucrose and histidine (Su-Hi) were exposed to high temperatures (≈240 °C), they produced carbonyl and aromatic compounds including beta-D-Glucopyranose, 1,6-anhydro (10.11%), 2-Butanone, 4,4-dimethoxy- (12.89%), 2(1H)-Quinolinone-hydrazine (5.73%), Benzenamine (6.35%), 2,5-Pyrrolidinedione, 1-[(3,4-dimethylbenzoyl)oxy]- (5.82%), Benzene-(1-ethyl-1-propenyl) (5.62%), and 4-Pyridinamine-2,6-dimethyl (5.52%). The compounds mentioned can permeate the cell membrane and contribute to the development of cell death by necrosis in human immune cells. The evidence suggests that a specific set of pyrolytic compounds may pose a risk to immune cells. This investigation reveals the complex relationship between high-temperature cooking-induced transformations, compound permeation inside the cells, and downstream cellular responses, emphasizing the significance of considering the broader health implications of food chemical contaminants

    Understanding the Interaction between Nanomaterials Originated from High-Temperature Processed Starch/Myristic Acid and Human Monocyte Cells

    No full text
    High-temperature cooking approaches trigger many metabolically undesirable molecule formations, which pose health risks. As a result, nanomaterial formation has been observed while cooking and reported recently. At high temperatures, starch and myristic acid interact and lead to the creation of nanomaterials (cMS-NMs). We used a non-polar solvent chloroform to separate the nanomaterials using a liquid–liquid extraction technique. The physico-chemical characterization was carried out using dynamic light scattering (DLS), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR). To determine the biological impact of these nanomaterials using different in vitro assays, including a cell viability assay, microscopic staining, and gene expression analysis, we adopted the THP-1 cell line as an in vitro monocyte model in our study. The TEM images revealed that fabricated cMS nanomaterials are smaller than 100 nm in diameter. There were significant concerns found in the cytotoxicity assay and gene expression analysis. At concentrations of 100–250 µg/mL, the cMS-NMs caused up to 95% cell death. We found both necrosis and apoptosis in cMS-NMs treated THP-1 cells. In cMS-NMs-treated THP-1 cells, we found decreased expression levels in IL1B and NFKB1A genes and significant upregulation in MIF genes, suggesting a negative immune response. These findings strongly suggest that cMS-NMs originated from high-temperature food processing can cause adverse effects on biological systems. Therefore, charred materials in processed foods should be avoided in order to minimize the risk of health complications

    [Ru(phen)<SUB>2</SUB>(dppz)]<SUP>2+</SUP> as an efficient optical probe for staining nuclear components

    No full text
    The 'molecular light switch' complexes [Ru(bpy)2(dppz)]2+ (1) and [Ru(phen)2(dppz)]2+ (2), where bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline and dppz = dipyrido[3,2-a:2',3'-c]phenazine, have been explored as probes for diagnosing and staining nuclear components. The phen complex acts as a better staining agent for nonviable cells than for viable cells and exhibits a staining efficiency in tail region of comet more specific and stronger than the already known dye Hoechst 33258

    Non-covalent DNA binding and cytotoxicity of certain mixed-ligand ruthenium(II) complexes of 2,2'-dipyridylamine and diimines

    No full text
    A series of mixed ligand ruthenium(II) complexes [Ru(Hdpa)2(diimine)](ClO4)21-5, where Hdpa is 2,2'-dipyridylamine and diimine is 1,10-phenanthroline (phen) and a modified/extended 1,10-phenanthroline such as, 5,6-dimethyl-1,10-phenanthroline (5,6-dmp), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq), 5-methyldipyrido[3,2-d:2',3'-f]quinoxaline (mdpq) and dipyrido[3,2-a:2',3'-c]phenazine (dppz) have been isolated and characterized by analytical and spectral methods. The complex [Ru(Hdpa)2(phen)](PF6)21 has been structurally characterized and the coordination geometry around Ru(II) in it is described as distorted octahedral. 1H NMR spectral data reveal that 1-5 should have a C2 symmetry lying on the diimine plane due to the rapid flapping of the coordinated Hdpa ligands. The interaction of the complexes with calf thymus (CT) DNA has been explored by using absorption and emission spectral and viscometry and electrochemical techniques and the mode of DNA binding of the complexes has been proposed. The DNA binding affinity of the complexes decreases with decrease in number of planar aromatic rings in the co-ligand supporting the intercalation of the diimine co-ligands in between the DNA base pairs. Circular dichroic spectral studies reveal that the complexes 3-5 exhibit induced circular dichroism upon binding to CT DNA. Interestingly, upon interaction with CT DNA all the complexes show an increase in anodic current in the cyclic voltammograms suggesting that they are involved in electrocatalytic guanine oxidation. Interestingly, of all the complexes, only 5 alters the DNA superhelicity upon binding with supercoiled pBR322 DNA, which is consistent with its higher DNA binding affinity. Further, the cytotoxicities of the complexes against human cervical epidermoid carcinoma cell line (ME180) have been examined. Interestingly, 5 exhibits a cytotoxicity against ME180 higher than other complexes with potency approximately 8 times more than cisplatin for 24 h incubation but 4 times lower than cisplatin for 48 h incubation

    Induction of cell death by ternary copper(II) complexes of L-tyrosine and diimines: role of coligands on DNA binding and cleavage and anticancer activity

    No full text
    The mononuclear mixed ligand copper(II) complexes of the type [Cu(l-tyr)(diimine)](ClO4), where tyr is l-tyrosine and diimine is 2,2'-bipyridine (bpy) (1), 1,10-phenanthroline (phen) (2), 5,6-dimethyl-1,10-phenanthroline (5,6-dmp) (3), and dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) (4), have been isolated and characterized by analytical and spectral methods. In the X-ray crystal structure 3 Cu(II) possesses a distorted square pyramidal coordination geometry with the two nitrogen atoms of 5,6-dmp ligand and the amine nitrogen and carboxylate oxygen atoms of l-tyrosine located at the equatorial sites and the coordinated water molecule present in the apical position. The electronic absorption and electron paramagnetic resonance (EPR) spectral parameters reveal that the complexes retain their square-based geometries even in solution. All of the complexes display a ligand field band in the visible region (600-700 nm) in Tris-HCl/NaCl buffer (5:50 mM) at pH 7.2 and also axial EPR spectra in acetonitrile at 77 K with g &gt; g&#8869; indicating a dx2-y2 ground state. The g and A values of 2.230 and (170-180) &#215; 10-4 cm-1, respectively, conform to a square-based CuN3O coordination chromophore, which is consistent with the X-ray crystal structure of 3. The interaction of the complexes with calf thymus DNA (CT DNA) has been explored by using physical methods to propose modes of DNA binding of the complexes. Absorption (Kb) and emission spectral studies and viscosity measurements indicate that 4 interacts with DNA more strongly than all of the other complexes through partial intercalation of the extended planar ring of dpq with DNA base stack. Interestingly, complex 3 exhibits a DNA binding affinity that is higher than that of 2, which suggests the involvement of 5,6-dimethyl groups on the phen ring in hydrophobic interaction with DNA surface. In contrast with the increase in relative viscosities of DNA bound to 2-4, the viscosity of DNA bound to 1 decreases, indicating the shortening of the DNA chain length by means of the formation of kinks or bends. All complexes exhibit effective DNA (pUC19 DNA) cleavage at 100 &#956; M complex concentrations, and the order of DNA cleavage ability varies as 3 &gt; 2 &gt; 4 &gt; 1. Interestingly, 3 exhibits a DNA cleavage rate constant that is higher than that of the other complexes only at 100 &#956; M concentration, whereas 4 exhibits the highest cleavage rate constant at 80 &#181;M complex concentration. The oxidative DNA cleavage follows the order 4 &gt; 3 &gt; 2 &gt; 1. Mechanistic studies reveal that the DNA cleavage pathway involves hydroxyl radicals. Interestingly, only 4 displays efficient photonuclease activity upon irradiation with 365 nm light, which occurs through double-strand DNA breaks involving hydroxyl radicals. Furthermore, cytotoxicity studies on the nonsmall lung cancer (H-460) cell line show that the IC50 values of 2-4 are more or less equal to cisplatin for the same cell line, indicating that they have the potential to act as very effective anticancer drugs in a time-dependent manner. The study of cytological changes reveals the higher induction of apoptosis and mitotic catastrophe for 4 and 3, respectively. The alkaline single-cell gel electrophoresis (comet assay), DNA laddering, and AO/EB and Hoechst 33258 staining assays have also been employed in finding the extent of DNA damage. Flow cytometry analysis shows an increase in the percentage of cells with apoptotic morphological features in the sub-G0/G1 phase for 4, whereas it shows mitotic catastrophe for 3

    Induction of Redox-Mediated Cell Death in ER-Positive and ER-Negative Breast Cancer Cells by a Copper(II)-Phenolate Complex: An In Vitro and In Silico Study

    No full text
    This research was aimed at finding the cytotoxic potential of the mixed ligand copper(II) complex [Cu(tdp)(phen)](ClO4)&mdash;where H(tdp) is the tetradentate ligand 2-[(2-(2-hydroxyethylamino)-ethylimino)methyl]phenol, and phen is 1,10-phenanthroline&mdash;to two genotypically different breast cancer cells, MCF-7 (p53+ and ER+) and MDA-MB-231 (p53- and ER-). The complex has been already shown to be cytotoxic to ME180 cervical carcinoma cells. The special focus in this study was the induction of cell death by apoptosis and necrosis, and its link with ROS. The treatment brought about nuclear fragmentation, phosphatidylserine externalization, disruption of mitochondrial trans-membrane potential, DNA damage, cell cycle arrest at sub-G1 phase, and increase of ROS generation, followed by apoptotic death of cells during early hours and a late onset of necrosis in the cells surviving the apoptosis. The efficacy of the complex against genotypically different breast cancer cells is attributed to a strong association through p53-mitochondrial redox&mdash;cell cycle junction. The ADMET properties and docking of the complex at the active site of Top1 are desirable attributes of a lead molecule for development into a therapeutic. Thus, it is shown that the copper(II)&ndash;phenolate complex[Cu(tdp)(phen)]+ offers potential to be developed into a therapeutic for breast cancers in general and ER-negative ones in particular

    Mixed-ligand copper(II)-phenolate complexes: effect of coligand on enhanced DNA and protein binding, DNA cleavage, and anticancer activity

    No full text
    The copper(II) complex [Cu(tdp)(ClO4)]&#183;0.5H2O (1), where H(tdp) is the tetradentate ligand 2-[(2-(2-hydroxyethylamino)ethylimino)methyl]phenol, and the mixed ligand complexes [Cu(tdp)(diimine)]+ (2-5), where diimine is 2,2'-bipyridine (bpy) (2), 1,10-phenanthroline (phen) (3), 3,4,7,8-tetramethyl-1,10-phenanthroline (tmp) (4), and dipyrido-[3,2-d:2',3'-f]-quinoxaline (dpq) (5), have been isolated and characterized by analytical and spectral methods. Complexes 1 and [Cu(tdp)(phen)]ClO4 (3) have been structurally characterized, and their coordination geometries around copper(II) are described as distorted octahedral. The equatorially coordinated ethanolic oxygen in 1 is displaced to an axial position upon incorporating the strongly chelating phen, as in 3. The solution structures of all the complexes have been assessed to be square-based using electronic absorption and electron paramagnetic resonance (EPR) spectroscopy. The interaction of the complexes with calf thymus DNA (CT DNA) has been explored by using absorption, emission, and circular dichroic spectral and viscometric studies, and modes of DNA binding for the complexes have been proposed. Absorption spectral (Kb = 0.071 &#177; 0.005 (2), 0.90 &#177; 0.03 (3), 7.0 &#177; 0.2 (4), 9.0 &#177; 0.1 &#215; 105 M-1 (5)), emission spectral (Kapp = 4.6 (1), 7.8 (2), 10.0 (3), 12.5 (4), 25.0 &#215; 105 M-1 (5)), and viscosity measurements reveal that 5 interacts with DNA more strongly than the other complexes through partial intercalation of the extended planar ring of the coordinated dpq with the DNA base stack. Interestingly, only complex 4 causes a B to A conformational change upon binding DNA. All the complexes hydrolytically cleave pBR322 supercoiled DNA in 10% DMF/5 mM Tris-HCl/50 mM NaCl buffer at pH 7.1 in the absence of an activating agent, and the cleavage efficiency varies in the order 5 &gt; 3 &gt; 2 &gt; 4 &gt; 1 with 5 displaying the highest Kcat value (5.47 &#177; 0.10 h-1). The same order of cleavage is observed for the oxidative cleavage of DNA in the presence of ascorbic acid as a reducing agent. Interestingly, of all the complexes, only 5 displays efficient photonuclease activity through double-strand DNA breaks upon irradiation with 365 nm light through a mechanistic pathway involving hydroxyl radicals. The protein binding ability of 1-5 has been also monitored by using the plasma protein bovine serum albumin (BSA), and 4 exhibits a protein binding higher than that of the other complexes. Further, the anticancer activity of the complexes on human cervical epidermoid carcinoma cell line (ME180) has been examined. Interestingly, the observed IC50 values reveal that complex 4, which effects conformational change on DNA and binds to BSA more strongly, exhibits a cytotoxicity higher than the other complexes. It also exhibits approximately 100 and 6 times more potency than cisplatin and mitomycin C for 24 and 48 h incubation times, respectively, suggesting that 4 can be explored further as a potential anticancer drug. Complexes 4 and 5 mediate the arrest of S and G2/M phases in the cell cycle progression at 24 h harvesting time, which progress into apoptosis
    corecore