75 research outputs found
The role of cardiac troponin T quantity and function in cardiac development and dilated cardiomyopathy
Background: Hypertrophic (HCM) and dilated (DCM) cardiomyopathies results from sarcomeric protein mutations, including cardiac troponin T (cTnT, TNNT2). We determined whether TNNT2 mutations cause cardiomyopathies by altering cTnT function or quantity; whether the severity of DCM is related to the ratio of mutant to wildtype cTnT; whether Ca2+ desensitization occurs in DCM; and whether absence of cTnT impairs early embryonic cardiogenesis. Methods and Findings: We ablated Tnnt2 to produce heterozygous Tnnt2+/ mice, and crossbreeding produced homozygous null Tnnt2-/-embryos. We also generated transgenic mice overexpressing wildtype (TGWT) or DCM mutant (TGK210Δ) Tnnt2. Crossbreeding produced mice lacking one allele of Tnnt2, but carrying wildtype (Tnnt2+/-/TGWT) or mutant (Tnnt2+/-/TGK210Δ) transgenes. Tnnt2+/-mice relative to wildtype had significantly reduced transcript (0.82 ± 0.06 [SD] vs. 1.00 ± 0.12 arbitrary units; p = 0.025), but not protein (1.01 ± 0.20 vs. 1.00 ± 0.13 arbitrary units; p = 0.44). Tnnt2+/-mice had normal hearts (histology, mass, left ventricular end diastolic diameter [LVEDD], fractional shortening [FS]). Moreover, whereas Tnnt2+/-/ TGK210Δ mice had severe DCM, TGK210Δ mice had only mild DCM (FS 18 ± 4 vs. 29 ± 7%; p < 0.01). The difference in severity of DCM may be attributable to a greater ratio of mutant to wildtype Tnnt2 transcript in Tnnt2+/-/TGK210Δ relative to TGK210Δ mice (2.42±0.08, p = 0.03). Tnnt2+/-/TGK210Δ muscle showed Ca2+ desensitization (pCa50 = 5.34 ± 0.08 vs. 5.58 ± 0.03 at sarcomere length 1.9 μm. p<0.01), but no difference in maximum force generation. Day 9.5 Tnnt2-/-embryos had normally looped hearts, but thin ventricular walls, large pericardial effusions, noncontractile hearts, and severely disorganized sarcomeres. Conclusions: Absence of one Tnnt2 allele leads to a mild deficit in transcript but not protein, leading to a normal cardiac phenotype. DCM results from abnormal function of a mutant protein, which is associated with myocyte Ca2+ desensitization. The severity of DCM depends on the ratio of mutant to wildtype Tnnt2 transcript. cTnT is essential for sarcomere formation, but normal embryonic heart looping occurs without contractile activity. © 2008 Ahmad et al
Synergy between loss of NF1 and overexpression of MYCN in neuroblastoma is mediated by the GAP-related domain
Earlier reports showed that hyperplasia of sympathoadrenal cell precursors during embryogenesis in Nf1-deficient mice is independent of Nf1’s role in down-modulating RAS-MAPK signaling. We demonstrate in zebrafish that nf1 loss leads to aberrant activation of RAS signaling in MYCN-induced neuroblastomas that arise in these precursors, and that the GTPase-activating protein (GAP)-related domain (GRD) is sufficient to suppress the acceleration of neuroblastoma in nf1-deficient fish, but not the hypertrophy of sympathoadrenal cells in nf1 mutant embryos. Thus, even though neuroblastoma is a classical “developmental tumor”, NF1 relies on a very different mechanism to suppress malignant transformation than it does to modulate normal neural crest cell growth. We also show marked synergy in tumor cell killing between MEK inhibitors (trametinib) and retinoids (isotretinoin) in primary nf1a-/- zebrafish neuroblastomas. Thus, our model system has considerable translational potential for investigating new strategies to improve the treatment of very high-risk neuroblastomas with aberrant RAS-MAPK activation
Is nonangiogenesis a novel pathway for cancer progression? A study using 3-dimensional tumour reconstructions
The nonangiogenic lung tumour is characterized by neoplastic cells co-opting the pre-existent vasculature and filling the alveoli space. 3-Dimensional reconstruction of the tumour reveals that this particular tumour progresses without neovascularization and there is no major destruction of the lung's architectural integrity
Angiogenesis extent and macrophage density increase simultaneously with pathological progression in B-cell non-Hodgkin's lymphomas
Node biopsies of 30 benign lymphadenopathies and 71 B-cell non-Hodgkin's lymphomas (B-NHLs) were investigated for microvessel and macrophage counts using immunohistochemistry and morphometric analysis. Both counts were significantly higher in B-NHL. Moreover, when these were grouped into low-grade and high-grade lymphomas, according to the Kiel classification and Working Formulation (WF), statistically significant higher counts were found in the high-grade tumours. Immunohistochemistry and electron microscopy revealed a close spatial association between microvessels and macrophages. Overall, the results suggest that, in analogy to what has already been shown in solid tumours, angiogenesis occurring in B-NHLs increases with tumour progression, and that macrophages promote the induction of angiogenesis via the release of their angiogenic factors. © 1999 Cancer Research Campaig
Recommended from our members
Quiz case 1 - Posttransplant lymphoproliferative disease (PTLD) of the epiglottis
- …