14 research outputs found

    The Roles of daf-6 and Cell-Cell Interactions in Sensory Organ Morphogenesis

    Get PDF
    The development of multicellular organs depends on the regulation of cell shape, position, and orientation. The genetic regulation of these morphogenetic processes is poorly understood. As a model for organ morphogenesis, I studied the development of the Caenorhabditis elegans amphid sensory organ. Sensory organs in diverse species are often composed of neuronal sensory endings accommodated in a lumen formed by ensheathing epithelia or glia. The generation of this structure may require cell-autonomous factors that control lumen formation, as well as cell non-autonomous factors that coordinate the morphogenesis of the lumen with the resident neuronal processes. Understanding these processes would provide insight into lumen formation, glia morphogenesis, and cell-cell interactions during development, especially neuronal regulation of glia morphogenesis. In this thesis, I identify and characterize genes required for lumen formation in the amphid sensory organ. First, the gene daf-6 is required cell autonomously during amphid lumen formation. daf-6 encodes a Patched-related protein that is a member of a previously uncharacterized sub-family of sterolsensing domain containing proteins. Interestingly, daf-6 is expressed and required in several tubular structures, such as the excretory system and vulva. Thus, a similar genetic pathway is required for the formation of different lumens. Secondly, I conducted a forward genetic screen and identified and characterized mutations that suppress the lumen formation defects in daf-6 mutants. Finally, by examining mutants defective in sensory neuron process formation, I showed that amphid lumen shape is determined by its resident sensory endings

    IGDB-2, an Ig/FNIII protein, binds the ion channel LGC-34 and controls sensory compartment morphogenesis in C. elegans

    Get PDF
    Sensory organ glia surround neuronal receptive endings (NREs), forming a specialized compartment important for neuronal activity, and reminiscent of glia-ensheathed synapses in the central nervous system. We previously showed that DAF-6, a Patched-related protein, is required in glia of the C. elegans amphid sensory organ to restrict sensory compartment size. LIT-1, a Nemo-like kinase, and SNX-1, a retromer component, antagonize DAF-6 and promote compartment expansion. To further explore the machinery underlying compartment size control, we sought genes whose inactivation restores normal compartment size to daf-6 mutants. We found that mutations in igdb-2, encoding a single-pass transmembrane protein containing Ig-like and fibronectin type III domains, suppress daf-6 mutant defects. IGDB-2 acts in glia, where it localizes to glial membranes surrounding NREs, and, together with LIT-1 and SNX-1, regulates compartment morphogenesis. Immunoprecipitation followed by mass spectrometry demonstrates that IGDB-2 binds to LGC-34, a predicted ligand-gated ion channel, and lgc-34 mutations inhibit igdb-2 suppression of daf-6. Our findings reveal a novel membrane protein complex and suggest possible mechanisms for how sensory compartment size is controlled

    Functional Genomics of the Cilium, a Sensory Organelle

    Get PDF
    SummaryCilia and flagella play important roles in many physiological processes, including cell and fluid movement, sensory perception, and development [1]. The biogenesis and maintenance of cilia depend on intraflagellar transport (IFT), a motility process that operates bidirectionally along the ciliary axoneme [1, 2]. Disruption in IFT and cilia function causes several human disorders, including polycystic kidneys, retinal dystrophy, neurosensory impairment, and Bardet-Biedl syndrome (BBS) [3–5]. To uncover new ciliary components, including IFT proteins, we compared C. elegans ciliated neuronal and nonciliated cells through serial analysis of gene expression (SAGE) and screened for genes potentially regulated by the ciliogenic transcription factor, DAF-19 [6]. Using these complementary approaches, we identified numerous candidate ciliary genes and confirmed the ciliated-cell-specific expression of 14 novel genes. One of these, C27H5.7a, encodes a ciliary protein that undergoes IFT. As with other IFT proteins, its ciliary localization and transport is disrupted by mutations in IFT and bbs genes. Furthermore, we demonstrate that the ciliary structural defect of C. elegans dyf-13(mn396) mutants is caused by a mutation in C27H5.7a. Together, our findings help define a ciliary transcriptome and suggest that DYF-13, an evolutionarily conserved protein, is a novel core IFT component required for cilia function
    corecore