334 research outputs found

    Population transcriptomics of Drosophila melanogaster females

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Variation at the level of gene expression is abundant in natural populations and is thought to contribute to the adaptive divergence of populations and species. Gene expression also differs considerably between males and females. Here we report a microarray analysis of gene expression variation among females of 16 <it>Drosophila </it><it>melanogaster </it>strains derived from natural populations, including eight strains from the putative ancestral range in sub-Saharan Africa and eight strains from Europe. Gene expression variation among males of the same strains was reported previously.</p> <p>Results</p> <p>We detected relatively low levels of expression polymorphism within populations, but much higher expression divergence between populations. A total of 569 genes showed a significant expression difference between the African and European populations at a false discovery rate of 5%. Genes with significant over-expression in Europe included the insecticide resistance gene <it>Cyp6g1</it>, as well as genes involved in proteolysis and olfaction. Genes with functions in carbohydrate metabolism and vision were significantly over-expressed in the African population. There was little overlap between genes expressed differently between populations in females and males.</p> <p>Conclusions</p> <p>Our results suggest that adaptive changes in gene expression have accompanied the out-of-Africa migration of <it>D. melanogaster</it>. Comparison of female and male expression data indicates that the vast majority of genes differing in expression between populations do so in only one sex and suggests that most regulatory adaptation has been sex-specific.</p

    Acesso a Tratamento Endovascular para Acidente Vascular Cerebral Isquémico em Portugal

    Get PDF
    Introduction: Since the publication of endovascular treatment trials and European Stroke Guidelines, Portugal has re-organized stroke healthcare. The nine centers performing endovascular treatment are not equally distributed within the country, which may lead to differential access to endovascular treatment. Our main aim was to perform a descriptive analysis of the main treatment metrics regarding endovascular treatment in mainland Portugal and its administrative districts. Material and methods: A retrospective national multicentric cohort study was conducted, including all ischemic stroke patients treated with endovascular treatment in mainland Portugal over two years (July 2015 to June 2017). All endovascular treatment centers contributed to an anonymized database. Demographic, stroke-related and procedure-related variables were collected. Crude endovascular treatment rates were calculated per 100 000 inhabitants for mainland Portugal, and each district and endovascular treatment standardized ratios (indirect age-sex standardization) were also calculated. Patient time metrics were computed as the median time between stroke onset, first-door, and puncture. Results: A total of 1625 endovascular treatment procedures were registered. The endovascular treatment rate was 8.27/100 000 inhabitants/year. We found regional heterogeneity in endovascular treatment rates (1.58 to 16.53/100 000/year), with higher rates in districts closer to endovascular treatment centers. When analyzed by district, the median time from stroke onset to puncture ranged from 212 to 432 minutes, reflecting regional heterogeneity. Discussion: Overall endovascular treatment rates and procedural times in Portugal are comparable to other international registries. We found geographic heterogeneity, with lower endovascular treatment rates and longer onset-to-puncture time in southern and inner regions. Conclusion: The overall national rate of EVT in the first two years after the organization of EVT-capable centers is one of the highest among European countries, however, significant regional disparities were documented. Moreover, stroke-onset-to-first-door times and in-hospital procedural times in the EVT centers were comparable to those reported in the randomized controlled trials performed in high-volume tertiary hospitals.info:eu-repo/semantics/publishedVersio

    Lactate released by inflammatory bone marrow neutrophils induces their mobilization via endothelial GPR81 signaling.

    Get PDF
    Neutrophils provide first line of host defense against bacterial infections utilizing glycolysis for their effector functions. How glycolysis and its major byproduct lactate are triggered in bone marrow (BM) neutrophils and their contribution to neutrophil mobilization in acute inflammation is not clear. Here we report that bacterial lipopolysaccharides (LPS) or Salmonella Typhimurium triggers lactate release by increasing glycolysis, NADPH-oxidase-mediated reactive oxygen species and HIF-1α levels in BM neutrophils. Increased release of BM lactate preferentially promotes neutrophil mobilization by reducing endothelial VE-Cadherin expression, increasing BM vascular permeability via endothelial lactate-receptor GPR81 signaling. GPR81-/- mice mobilize reduced levels of neutrophils in response to LPS, unless rescued by VE-Cadherin disrupting antibodies. Lactate administration also induces release of the BM neutrophil mobilizers G-CSF, CXCL1 and CXCL2, indicating that this metabolite drives neutrophil mobilization via multiple pathways. Our study reveals a metabolic crosstalk between lactate-producing neutrophils and BM endothelium, which controls neutrophil mobilization under bacterial infection
    corecore