40,596 research outputs found
Quantum spin circulator in Y junctions of Heisenberg chains
We show that a quantum spin circulator, a nonreciprocal device that routes
spin currents without any charge transport, can be achieved in Y junctions of
identical spin- Heisenberg chains coupled by a chiral three-spin
interaction. Using bosonization, boundary conformal field theory, and
density-matrix renormalization group simulations, we find that a chiral fixed
point with maximally asymmetric spin conductance arises at a critical point
separating a regime of disconnected chains from a spin-only version of the
three-channel Kondo effect. We argue that networks of spin-chain Y junctions
provide a controllable approach to construct long-sought chiral spin liquid
phases.Comment: 9 pages, 3 figure
Gravity and the Quantum: Are they Reconcilable?
General relativity and quantum mechanics are conflicting theories. The seeds
of discord are the fundamental principles on which these theories are grounded.
General relativity, on one hand, is based on the equivalence principle, whose
strong version establishes the local equivalence between gravitation and
inertia. Quantum mechanics, on the other hand, is fundamentally based on the
uncertainty principle, which is essentially nonlocal in the sense that a
particle does not follow one trajectory, but infinitely many trajectories, each
one with a different probability. This difference precludes the existence of a
quantum version of the strong equivalence principle, and consequently of a
quantum version of general relativity. Furthermore, there are compelling
experimental evidences that a quantum object in the presence of a gravitational
field violates the weak equivalence principle. Now it so happens that, in
addition to general relativity, gravitation has an alternative, though
equivalent description, given by teleparallel gravity, a gauge theory for the
translation group. In this theory torsion, instead of curvature, is assumed to
represent the gravitational field. These two descriptions lead to the same
classical results, but are conceptually different. In general relativity,
curvature geometrizes the interaction, while torsion in teleparallel gravity
acts as a force, similar to the Lorentz force of electrodynamics. Because of
this peculiar property, teleparallel gravity describes the gravitational
interaction without requiring any of the equivalence principles. The
replacement of general relativity by teleparallel gravity may, in consequence,
lead to a conceptual reconciliation of gravitation with quantum mechanics.Comment: 15 pages, 2 figures. Talk presented at the conference "Quantum
Theory: Reconsideration of Foundations-3", June 6-11, 2005, Vaxjo University,
Vaxjo, Swede
Instantons and Fluctuations in a Lagrangian Model of Turbulence
We perform a detailed analytical study of the Recent Fluid Deformation (RFD)
model for the onset of Lagrangian intermittency, within the context of the
Martin-Siggia-Rose-Janssen-de Dominicis (MSRJD) path integral formalism. The
model is based, as a key point, upon local closures for the pressure Hessian
and the viscous dissipation terms in the stochastic dynamical equations for the
velocity gradient tensor. We carry out a power counting hierarchical
classification of the several perturbative contributions associated to
fluctuations around the instanton-evaluated MSRJD action, along the lines of
the cumulant expansion. The most relevant Feynman diagrams are then integrated
out into the renormalized effective action, for the computation of velocity
gradient probability distribution functions (vgPDFs). While the subleading
perturbative corrections do not affect the global shape of the vgPDFs in an
appreciable qualitative way, it turns out that they have a significant role in
the accurate description of their non-Gaussian cores.Comment: 32 pages, 9 figure
- …