35,117 research outputs found

    A new approach on the stability analysis in ELKO cosmology

    Get PDF
    In this work it has been developed a new approach to study the stability of a system composed by an ELKO field interacting with dark matter, which could give some contribution in order to alleviate the cosmic coincidence problem. It is assumed that the potential which characterizes the ELKO field is not specified, but it is related to a constant parameter δ\delta. The strength of the interaction between matter and ELKO field is characterized by a constant parameter β\beta and it is also assumed that both ELKO field as matter energy density are related to their pressures by equations of state parameters ωϕ\omega_\phi and ωm\omega_m, respectively. The system of equations is analysed by a dynamical system approach. It has been found the conditions of stability between the parameters δ\delta and β\beta in order to have stable fixed points for the system for different values of the equation of state parameters ωϕ\omega_\phi and ωm\omega_m, and the results are presented in form of tables. The possibility of decay of ELKO field into dark matter or vice versa can be read directly from the tables, since the parameters δ\delta and β\beta satisfy some inequalities. It allows us to constrain the potential assuming that we have a stable system for different interactions terms between the ELKO field and dark matter. The cosmic coincidence problem can be alleviated for some specific relations between the parameters of the model.Comment: 16 pages, some new comments in the Introduction and at the begining of Section I

    Quantized fields and gravitational particle creation in f(R) expanding universes

    Get PDF
    The problem of cosmological particle creation for a spatially flat, homogeneous and isotropic Universes is discussed in the context of f(R) theories of gravity. Different from cosmological models based on general relativity theory, it is found that a conformal invariant metric does not forbid the creation of massless particles during the early stages (radiation era) of the Universe.Comment: 14 pages, 2 figure

    Thulium and ytterbium-doped titanium oxide thin films deposited by ultrasonic spray pyrolysis

    Full text link
    Thin films of thulium and ytterbium-doped titanium oxide were grown by metal-organic spray pyrolysis deposition from titanium(IV)oxide bis(acetylacetonate), thulium(III) tris(2,2,6,6-tetramethyl-3,5-heptanedionate) and ytterbium(III) tris(acetylacetonate). Deposition temperatures have been investigated from 300{\deg}C to 600{\deg}C. Films have been studied regarding their crystallity and doping quality. Structural and composition characterisations of TiO2:Tm,Yb were performed by electron microprobe, X-ray diffraction and Fourier transform infrared spectroscopy. The deposition rate can reach 0.8 \mum/h. The anatase phase of TiO2 was obtained after synthesis at 400{\deg}C or higher. Organic contamination at low deposition temperature is eliminated by annealing treatments.Comment: 6 pages, 6 figure

    Vortices in the presence of a nonmagnetic atom impurity in 2D XY ferromagnets

    Full text link
    Using a model of nonmagnetic impurity potential, we have examined the behavior of planar vortex solutions in the classical two-dimensional XY ferromagnets in the presence of a spin vacancy localized out of the vortex core. Our results show that a spinless atom impurity gives rise to an effective potential that repels the vortex structure.Comment: 6 pages, 2 figures, RevTex
    • …
    corecore