43,899 research outputs found

    Particle creation in a f(R) theory with cosmological constraints

    Full text link
    In this paper we study the creation of super-massive real scalar particles in the framework of a f(R)=R−β/Rnf(R)=R-\beta/R^n modified gravity theory, with parameters constrained by observational data. The analysis is restrict to a homogeneous and isotropic flat and radiation dominated universe. We compare the results to the standard Einstein gravity with cosmological constant (ΛCDM\Lambda CDM model), and we show that the total number density of created particles in the f(R)f(R) model is very close to the standard case. Another interesting result is that the spectrum of created particles is β\beta independent at early times.Comment: To appear in the General Relativity and Gravitation. arXiv admin note: text overlap with arXiv:1108.334

    How hole defects modify vortex dynamics in ferromagnetic nanodisks

    Full text link
    Defects introduced in ferromagnetic nanodisks may deeply affect the structure and dynamics of stable vortex-like magnetization. Here, analytical techniques are used for studying, among other dynamical aspects, how a small cylindrical cavity modify the oscillatory modes of the vortex. For instance, we have realized that if the vortex is nucleated out from the hole its gyrotropic frequencies are shifted below. Modifications become even more pronounced when the vortex core is partially or completely captured by the hole. In these cases, the gyrovector can be partially or completely suppressed, so that the associated frequencies increase considerably, say, from some times to several powers. Possible relevance of our results for understanding other aspects of vortex dynamics in the presence of cavities and/or structural defects are also discussed.Comment: 9 pages, 4 page

    Emergence of skyrmion lattices and bimerons in chiral magnetic thin films with nonmagnetic impurities

    Get PDF
    Skyrmions are topologically protected field structures with particlelike characteristics that play important roles in several areas of science. Recently, skyrmions have been directly observed in chiral magnets. Here, we investigate the effects of pointlike nonmagnetic impurities on the distinct initial states (random or helical ones) and on the formation of the skyrmion crystal in a discrete lattice. Using Monte Carlo techniques, we have found that even a small percentage of spin vacancies present in the chiral magnetic thin film considerably affects the skyrmion order. The main effects of impurities are somewhat similar to thermal effects. The presence of these spin vacancies also induces the formation of bimerons in both the helical and skyrmion states. We also investigate how adjacent impurities forming a hole affect the skyrmion crystal

    Magnetization reversals in a disk-shaped small magnet with an interface

    Full text link
    We consider a nanodisk possessing two coupled materials with different ferromagnetic exchange constant. The common border line of the two media passes at the disk center dividing the system exactly in two similar half-disks. The vortex core motion crossing the interface is investigated with a simple description based on a two-dimensional model which mimics a very thin real material with such a line defect. The main result of this study is that, depending on the magnetic coupling which connects the media, the vortex core can be dramatically and repeatedly flipped from up to down and vice versa by the interface. This phenomenon produces burst-like emission of spin waves each time the switching process takes place.Comment: 11 pages, 10 figure

    Instantons and Fluctuations in a Lagrangian Model of Turbulence

    Full text link
    We perform a detailed analytical study of the Recent Fluid Deformation (RFD) model for the onset of Lagrangian intermittency, within the context of the Martin-Siggia-Rose-Janssen-de Dominicis (MSRJD) path integral formalism. The model is based, as a key point, upon local closures for the pressure Hessian and the viscous dissipation terms in the stochastic dynamical equations for the velocity gradient tensor. We carry out a power counting hierarchical classification of the several perturbative contributions associated to fluctuations around the instanton-evaluated MSRJD action, along the lines of the cumulant expansion. The most relevant Feynman diagrams are then integrated out into the renormalized effective action, for the computation of velocity gradient probability distribution functions (vgPDFs). While the subleading perturbative corrections do not affect the global shape of the vgPDFs in an appreciable qualitative way, it turns out that they have a significant role in the accurate description of their non-Gaussian cores.Comment: 32 pages, 9 figure

    The Onset of Intermittency in Stochastic Burgers Hydrodynamics

    Full text link
    We study the onset of intermittency in stochastic Burgers hydrodynamics, as characterized by the statistical behavior of negative velocity gradient fluctuations. The analysis is based on the response functional formalism, where specific velocity configurations - the viscous instantons - are assumed to play a dominant role in modeling the left tails of velocity gradient probability distribution functions. We find, as expected on general grounds, that the field theoretical approach becomes meaningful in practice only if the effects of fluctuations around instantons are taken into account. Working with a systematic cumulant expansion, it turns out that the integration of fluctuations yields, in leading perturbative order, to an effective description of the Burgers stochastic dynamics given by the renormalization of its associated heat kernel propagator and the external force-force correlation function.Comment: 10 pages, 6 figure
    • …
    corecore