36,480 research outputs found

    Tunable quantum dots in bilayer graphene

    Full text link
    We demonstrate theoretically that quantum dots in bilayers of graphene can be realized. A position-dependent doping breaks the equivalence between the upper and lower layer and lifts the degeneracy of the positive and negative momentum states of the dot. Numerical results show the simultaneous presence of electron and hole confined states for certain doping profiles and a remarkable angular momentum dependence of the quantum dot spectrum which is in sharp contrast with that for conventional semiconductor quantum dots. We predict that the optical spectrum will consist of a series of non-equidistant peaks.Comment: 5 pages, to appear in Nano Letter

    Landau levels and oscillator strength in a biased bilayer of graphene

    Full text link
    We obtain analytical expressions for the eigenstates and the Landau level spectrum of biased graphene bilayers in a magnetic field. The calculations are performed in the context of a four-band continuum model and generalize previous approximate results. Solutions are presented for the spectrum as a function of interlayer coupling, the potential difference between the layers and the magnetic field. The explicit expressions allow us to calculate the oscillator strength and the selection rules for electric dipole transitions between the Landau states. Some transitions are significantly shifted in energy relative to those in an unbiased bialyer and exhibit a very different magnetic field dependence.Comment: To appear in Phys. Rev.

    A model for structural defects in nanomagnets

    Full text link
    A model for describing structural pointlike defects in nanoscaled ferromagnetic materials is presented. Its details are explicitly developed whenever interacting with a vortex-like state comprised in a thin nanodisk. Among others, our model yields results for the vortex equilibrium position under the influence of several defects along with an external magnetic field in good qualitative agreement with experiments. We also discuss how such defects may affect the vortex motion, like its gyrotropic oscillation and dynamical polarization reversal.Comment: 8 pages, resubmitted to Journal of Applied Physic

    Influence of chirping the Raman lasers in an atom gravimeter: phase shifts due to the Raman light shift and to the finite speed of light

    Full text link
    We present here an analysis of the influence of the frequency dependence of the Raman laser light shifts on the phase of a Raman-type atom gravimeter. Frequency chirps are applied to the Raman lasers in order to compensate gravity and ensure the resonance of the Raman pulses during the interferometer. We show that the change in the Raman light shift when this chirp is applied only to one of the two Raman lasers is enough to bias the gravity measurement by a fraction of μ\muGal (1 μ1~\muGal~=~10810^{-8}~m/s2^2). We also show that this effect is not compensated when averaging over the two directions of the Raman wavevector kk. This thus constitutes a limit to the rejection efficiency of the kk-reversal technique. Our analysis allows us to separate this effect from the effect of the finite speed of light, which we find in perfect agreement with expected values. This study highlights the benefit of chirping symmetrically the two Raman lasers

    Confined states and direction-dependent transmission in graphene quantum wells

    Full text link
    We report the existence of confined massless fermion states in a graphene quantum well (QW) by means of analytical and numerical calculations. These states show an unusual quasi-linear dependence on the momentum parallel to the QW: their number depends on the wavevector and is constrained by electron-hole conversion in the barrier regions. An essential difference with non-relativistic electron states is a mixing between free and confined states at the edges of the free-particle continua, demonstrated by the direction-dependent resonant transmission across a potential well.Comment: Submitted to PR

    Dynamics of molecular nanomagnets in time-dependent external magnetic fields: Beyond the Landau-Zener-St\"{u}ckelberg model

    Full text link
    The time evolution of the magnetization of a magnetic molecular crystal is obtained in an external time-dependent magnetic field, with sweep rates in the kT/s range. We present the 'exact numerical' solution of the time dependent Schr\"{o}dinger equation, and show that the steps in the hysteresis curve can be described as a sequence of two-level transitions between adiabatic states. The multilevel nature of the problem causes the transition probabilities to deviate significantly from the predictions of the Landau-Zener-St\"{u}ckelberg model. These calculations allow the introduction of an efficient approximation method that accurately reproduces the exact results. When including phase relaxation by means of an appropriate master equation, we observe an interplay between coherent dynamics and decoherence. This decreases the size of the magnetization steps at the transitions, but does not modify qualitatively the physical picture obtained without relaxation.Comment: 8 pages, 7 figure
    corecore