106 research outputs found

    Quasiparticle interference patterns as a test for the nature of the pseudogap phase in the cuprate superconductors

    Full text link
    Electrons, when scattered by static random disorder, form standing waves that can be imaged using scanning tunneling microscopy. Such interference patterns, observable by the recently developed technique of Fourier transform scanning tunneling spectroscopy (FT-STS), are shown to carry unique fingerprints characteristic of the electronic order present in a material. We exploit this feature of the FT-STS technique to propose a test for the nature of the enigmatic pseudogap phase in the high-TcT_c cuprate superconductors. Through their sensitivity to the quasiparticle spectra and coherence factors, the FT-STS patterns in principle carry enough information to unambiguously determine the nature of the condensate responsible for the pseudogap phenomenon. We argue that the next generation of FT-STS experiments, currently underway, should be able to distinguish between the pseudogap dominated by the remnants of superconducting order from the pseudogap dominated by some competing order in the particle-hole channel. Using general arguments and detailed numerical calculations, we point to certain fundamental differences between the two scenarios and discuss the prospects for future experiments.Comment: 15 pages REVTeX + 9 ps figures. For related work and info visit http://www.physics.ubc.ca/~franz; version 2 to appear in IJMP

    Low-Frequency Quantum Oscillations due to Strong Electron Correlations

    Full text link
    The normal-state energy spectrum of the two-dimensional tt-JJ model in a homogeneous perpendicular magnetic field is investigated. The density of states at the Fermi level as a function of the inverse magnetic field 1B\frac{1}{B} reveals oscillations in the range of hole concentrations 0.08<x<0.180.08<x<0.18. The oscillations have both high- and low-frequency components. The former components are connected with large Fermi surfaces, while the latter with van Hove singularities in the Landau subbands, which traverse the Fermi level with changing BB. The singularities are related to bending the Landau subbands due to strong electron correlations. Frequencies of these components are of the same order of magnitude as quantum oscillation frequencies observed in underdoped cuprates.Comment: 10 pages, 3 figures, Proc. NSS-2013, Yalta. arXiv admin note: text overlap with arXiv:1308.056

    Quantum oscillations from Fermi arcs

    Full text link
    When a metal is subjected to strong magnetic field B nearly all measurable quantities exhibit oscillations periodic in 1/B. Such quantum oscillations represent a canonical probe of the defining aspect of a metal, its Fermi surface (FS). In this study we establish a new mechanism for quantum oscillations which requires only finite segments of a FS to exist. Oscillations periodic in 1/B occur if the FS segments are terminated by a pairing gap. Our results reconcile the recent breakthrough experiments showing quantum oscillations in a cuprate superconductor YBCO, with a well-established result of many angle resolved photoemission (ARPES) studies which consistently indicate "Fermi arcs" -- truncated segments of a Fermi surface -- in the normal state of the cuprates.Comment: 8 pages, 5 figure

    Infrared cutoff dependence of the critical flavor number in three-dimensional QED

    Full text link
    We solve, analytically and numerically, a gap equation in parity invariant QED_3 in the presence of an infrared cutoff \mu and derive an expression for the critical fermion number N_c as a function of \mu. We argue that this dependence of N_c on the infrared scale might solve the discrepancy between continuum Schwinger-Dyson equations studies and lattice simulations of QED_3.Comment: 5 pages, 1 figure (revtex4), final versio

    Absolute values of the London penetration depth in YBa2Cu3O6+y measured by zero field ESR spectroscopy on Gd doped single crystals

    Full text link
    Zero-field electron spin resonance (ESR) of dilute Gd ions substituted for Y in the cuprate superconductor YBa2_2Cu3_3O6+y_{\rm 6+y} is used as a novel technique for measuring the absolute value of the low temperature magnetic penetration depth λ(T0)\lambda(T\to 0). The Gd ESR spectrum of samples with 1\approx 1% substitution was obtained with a broadband microwave technique that measures power absorption bolometrically from 0.5 GHz to 21 GHz. This ESR spectrum is determined by the crystal field that lifts the level degeneracy of the spin 7/2 Gd3+^{3+} ion and details of this spectrum provide information concerning oxygen ordering in the samples. The magnetic penetration depth is obtained by relating the number of Gd ions exposed to the microwave magnetic field to the frequency-integrated intensity of the observed ESR transitions. This technique has allowed us to determine precise values of λ\lambda for screening currents flowing in the three crystallographic orientations (a^\hat a, b^\hat b and c^\hat c) in samples of Gdx_{\rm x}Y1x_{\rm 1-x}Ba2_2Cu3_3O6+y_{6+{\rm y}} of three different oxygen contents y=0.993{\rm y}=0.993 (Tc=89T_c = 89 K), y=0.77{\rm y}=0.77 (Tc=75T_c=75 K) and y=0.52{\rm y}=0.52 (Tc=56T_c=56 K). The in-plane values are found to depart substantially from the widely reported relation Tc1/λ2T_c\propto 1/\lambda^2.Comment: 14 pages, 12 figures; version to appear in PR

    Mutation analysis of the MDM4 gene in German breast cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MDM4 is a negative regulator of p53 and cooperates with MDM2 in the cellular response to DNA damage. It is unknown, however, whether <it>MDM4 </it>gene alterations play some role in the inherited component of breast cancer susceptibility.</p> <p>Methods</p> <p>We sequenced the whole <it>MDM4 </it>coding region and flanking untranslated regions in genomic DNA samples obtained from 40 German patients with familial breast cancer. Selected variants were subsequently screened by RFLP-based assays in an extended set of breast cancer cases and controls.</p> <p>Results</p> <p>Our resequencing study uncovered two <it>MDM4 </it>coding variants in 4/40 patients. Three patients carried a silent substitution at codon 74 that was linked with another rare variant in the 5'UTR. No association of this allele with breast cancer was found in a subsequent screening of 133 patients with bilateral breast cancer and 136 controls. The fourth patient was heterozygous for the missense substitution D153G which is located in a less conserved region of the MDM4 protein but may affect a predicted phosphorylation site. The D153G substitution only partially segregated with breast cancer in the family and was not identified on additional 680 chromosomes screened.</p> <p>Conclusion</p> <p>This study did not reveal clearly pathogenic mutations although it uncovered two new unclassified variants at a low frequency. We conclude that there is no evidence for a major role of <it>MDM4 </it>coding variants in the inherited susceptibility towards breast cancer in German patients.</p

    The deubiquitinating enzyme USP17 is essential for GTPase subcellular localization and cell motility

    Get PDF
    Deubiquitinating enzymes are now emerging as potential therapeutic targets that control many cellular processes, but few have been demonstrated to control cell motility. Here, we show that ubiquitin-specific protease 17 (USP17) is rapidly and transiently induced in response to chemokines SDF-1/CXCL12 and IL-8/CXCL8 in both primary cells and cell lines, and that its depletion completely blocks chemokine-induced cell migration and cytoskeletal rearrangements. Using live cell imaging, we demonstrate that USP17 is required for both elongated and amoeboid motility, in addition to chemotaxis. USP17 has previously been reported to disrupt Ras localization and we now find that USP17 depletion blocks chemokine-induced subcellular relocalization of GTPases Cdc42, Rac and RhoA, which are GTPases essential for cell motility. Collectively, these results demonstrate that USP17 has a critical role in cell migration and may be a useful drug target for both inflammatory and metastatic disease

    Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor

    Full text link
    Despite twenty years of research, the phase diagram of high transition- temperature superconductors remains enigmatic. A central issue is the origin of the differences in the physical properties of these copper oxides doped to opposite sides of the superconducting region. In the overdoped regime, the material behaves as a reasonably conventional metal, with a large Fermi surface. The underdoped regime, however, is highly anomalous and appears to have no coherent Fermi surface, but only disconnected "Fermi arcs". The fundamental question, then, is whether underdoped copper oxides have a Fermi surface, and if so, whether it is topologically different from that seen in the overdoped regime. Here we report the observation of quantum oscillations in the electrical resistance of the oxygen-ordered copper oxide YBa2Cu3O6.5, establishing the existence of a well-defined Fermi surface in the ground state of underdoped copper oxides, once superconductivity is suppressed by a magnetic field. The low oscillation frequency reveals a Fermi surface made of small pockets, in contrast to the large cylinder characteristic of the overdoped regime. Two possible interpretations are discussed: either a small pocket is part of the band structure specific to YBa2Cu3O6.5 or small pockets arise from a topological change at a critical point in the phase diagram. Our understanding of high-transition temperature (high-Tc) superconductors will depend critically on which of these two interpretations proves to be correct

    Microbiology of the phyllosphere: a playground for testing ecological concepts

    Get PDF
    Many concepts and theories in ecology are highly debated, because it is often difficult to design decisive tests with sufficient replicates. Examples include biodiversity theories, succession concepts, invasion theories, coexistence theories, and concepts of life history strategies. Microbiological tests of ecological concepts are rapidly accumulating, but have yet to tap into their full potential to complement traditional macroecological theories. Taking the example of microbial communities on leaf surfaces (i.e. the phyllosphere), we show that most explorations of ecological concepts in this field of microbiology focus on autecology and population ecology, while community ecology remains understudied. Notable exceptions are first tests of the island biogeography theory and of biodiversity theories. Here, the phyllosphere provides the unique opportunity to set up replicated experiments, potentially moving fields such as biogeography, macroecology, and landscape ecology beyond theoretical and observational evidence. Future approaches should take advantage of the great range of spatial scales offered by the leaf surface by iteratively linking laboratory experiments with spatial simulation models

    Structural basis for DNA damage-induced phosphoregulation of MDM2 RING domain

    Get PDF
    Phosphorylation of MDM2 by ATM upon DNA damage is an important mechanism for deregulating MDM2, thereby leading to p53 activation. ATM phosphorylates multiple residues near the RING domain of MDM2, but the underlying molecular basis for deregulation remains elusive. Here we show that Ser429 phosphorylation selectively enhances the ubiquitin ligase activity of MDM2 homodimer but not MDM2-MDMX heterodimer. A crystal structure of phospho-Ser429 (pS429)-MDM2 bound to E2–ubiquitin reveals a unique 310-helical feature present in MDM2 homodimer that allows pS429 to stabilize the closed E2–ubiquitin conformation and thereby enhancing ubiquitin transfer. In cells Ser429 phosphorylation increases MDM2 autoubiquitination and degradation upon DNA damage, whereas S429A substitution protects MDM2 from auto-degradation. Our results demonstrate that Ser429 phosphorylation serves as a switch to boost the activity of MDM2 homodimer and promote its self-destruction to enable rapid p53 stabilization and resolve a long-standing controversy surrounding MDM2 auto-degradation in response to DNA damage
    corecore