89 research outputs found

    Lab1. Introducció al disseny analògic integrat amb l’eina Cadence

    Full text link
    Manual de Laboratori. Disseny Analògic Integrat - DAI- Grau Enginyeria Electrònica de Telecomunicació. Material Docent. Lab1. Introducció al disseny analògic integrat amb l’eina Cadence

    Lab 3. Miralls de Corrent

    Full text link
    Lab 3. Miralls de Corrent. Disseny Analògic Integrat. Grau d'Enginyeria Electrònica de Telecomunicació

    Lab2. Caracterització de dispositius MOS

    Full text link
    Lab2. Caracterització dedispositius MOS. Disseny Analògic Integrat. Grau Enginyeria Electrònica de Telecomunicació

    Lab 5. OTA Miller de dues etapes

    Full text link
    Lab 5. OTA Miller de dues etapes. Disseny Analògic Integrat. Grau Enginyeria Electrònica de Telecomunicació

    Aprenentatge basat en projectes en l’àrea d’electrònica per a Enginyers Biomèdics

    Get PDF
    Projecte: 2014PID-UB/076Actualment els estudiants d’Enginyeria Biomèdica realitzen pràctiques típiques d’electrònica en els seus estudis, similars a les que es realitzen en altres ensenyaments. Segons l’opinió dels estudiants aquest tipus de pràctiques són molt poc motivadores doncs, no veuen l’aplicació directa als seus estudis. La proposta és aplicar la metodologia basada en projectes per a la realització de les pràctiques en el grau d’Enginyeria Biomèdica en les dues assignatures: Electrònica Aplicada i "Biomedical Instruments and Equipment". D’aquesta forma els alumnes hauran de realitzar un projecte d’electrònica aplicat a l’Enginyeria Biomèdica. Els alumnes a més d’estar més motivats adquiriran competències en la realització d’un projecte, és a dir, mitjançant l’aprenentatge basat en projectes els estudiants podran adquirir competències professionals que són difícils de treballar amb metodologies convencionals. Algunes d’aquestes competències són les propostes per la UB com a competències transversals i els seran molt útils en el seu Treball Fi de Grau i en el seu futur desenvolupament professional

    Portable Bio-Devices: Design of Electrochemical Instruments from Miniaturized to Implantable Devices

    Get PDF
    The integration of biosensors and electronic technologies allows the development of biomedical systems able to diagnose and monitoring pathologies by detecting specific biomarkers. The chapter presents the main modules involved in the development of such devices, generically represented in Fig. 1, and focuses its attention on the essential components of these systems to address questions such as: how is the device powered? How does it communicate the measured data? What kind of sensors could be used?, and What kinds of electronics are used

    Bioimpedance Technique for Point-of-Care Devices Relying on Disposable Label-Free Sensors – An Anemia Detection Case

    Get PDF
    In this chapter, the development of a point-of-care device for bio-medical applications has been discussed. Our main objective is to research new electronic solutions for the detection, quantification, and monitoring of important biological agents in medical environments. The proposed systems and technologies rely on label-free disposable sensors, with portable electronics for user-friendly, low-cost solutions for medical disease diagnosis, monitoring, and treatment. In this chapter, we will focus on a specific point-of-care device for cellular analysis, applied to the case of anemia detection and monitoring. The methodology used for anemia monitoring is based on hematocrit measurement directly from whole blood samples by means of impedance analysis. The designed device is based on straightforward electronic standards for low power consumption and low-cost disposable sensor for low volume samples, resulting in a robust and low power consumption device for portable monitoring purposes of anemia. The device has been validated through different whole blood samples to prove the response, effectiveness, and robustness to detect anemia

    Teragnosis in vivo: Innovación nanomédica fomentada por la convergencia de tecnologías emergentes

    Get PDF
    El creciente desarrollo y la mejora en cuanto a innovación de dispositivos basados en la convergencia de tecnologías emergentes ha dado lugar a un uso cada vez mayor de los nanosensores en la comunidad biomédica. Sin embargo, los nanosensores implantables aún tienen que afrontar ciertos retos como la biocompatibilidad y la seguridad de datos. En este artículo se abordan el progreso y los principales desafíos para esta clase de dispositivos nanomédicos y se analizan además las principales aplicaciones médicas con especial énfasis en la teragnosis, término que integra el concepto de diagnosis y terapia en un mismo dispositivo. De este modo, se traza el proceso desde la investigación aplicada hasta la comercialización del producto, que es cuando el retorno social puede ser estimado. Finalmente, se contempla la gestión de la tecnología dentro de un ecosistema de innovación, cuya cadena de valor incluye una integración multidisciplinaria y el flujo del conocimiento

    Self-Powered Portable Electronic Reader for Point-of-Care Amperometric Measurements

    Get PDF
    In this work, we present a self-powered electronic reader (e-reader) for point-of-care diagnostics based on the use of a fuel cell (FC) which works as a power source and as a sensor. The self-powered e-reader extracts the energy from the FC to supply the electronic components concomitantly, while performing the detection of the fuel concentration. The designed electronics rely on straightforward standards for low power consumption, resulting in a robust and low power device without needing an external power source. Besides, the custom electronic instrumentation platform can process and display fuel concentration without requiring any type of laboratory equipment. In this study, we present the electronics system in detail and describe all modules that make up the system. Furthermore, we validate the device's operation with different emulated FCs and sensors presented in the literature. The e-reader can be adjusted to numerous current ranges up to 3 mA, with a 13 nA resolution and an uncertainty of 1.8%. Besides, it only consumes 900 µW in the low power mode of operation, and it can operate with a minimum voltage of 330 mV. This concept can be extended to a wide range of fields, from biomedical to environmental applications

    Design of a Customized multipurpose nano-enabled implantable system for in-vivo theranostics

    Get PDF
    The first part of this paper reviews the current development and key issues on implantable multi-sensor devices for in vivo theranostics. Afterwards, the authors propose an innovative biomedical multisensory system for in vivo biomarker monitoring that could be suitable for customized theranostics applications. At this point, findings suggest that cross-cutting Key Enabling Technologies (KETs) could improve the overall performance of the system given that the convergence of technologies in nanotechnology, biotechnology, micro&nanoelectronics and advanced materials permit the development of new medical devices of small dimensions, using biocompatible materials, and embedding reliable and targeted biosensors, high speed data communication, and even energy autonomy. Therefore, this article deals with new research and market challenges of implantable sensor devices, from the point of view of the pervasive system, and time-to-market. The remote clinical monitoring approach introduced in this paper could be based on an array of biosensors to extract information from the patient. A key contribution of the authors is that the general architecture introduced in this paper would require minor modifications for the final customized bio-implantable medical device
    corecore