16 research outputs found

    Biobanking, consent, and commercialization in international genetics research: the Type 1 Diabetes Genetics Consortium

    Get PDF
    Background and Purpose This article describes several ethical, legal, and social issues typical of international genetics biobanking, as encountered in the Type 1 Diabetes Genetics Consortium (T1DGC)

    Measurement of islet cell antibodies in the Type 1 Diabetes Genetics Consortium: efforts to harmonize procedures among the laboratories

    Get PDF
    Background and Purpose Three network laboratories measured antibodies to islet autoantigens. Antibodies to glutamic acid decarboxylase (GAD65 [GADA]) and the intracellular portion of protein tyrosine phosphatase (IA-2ic [IA-2A]) were measured by similar, but not identical, methods in samples from participants in the Type 1 Diabetes Genetics Consortium (T1DGC)

    Quality control of phenotypic forms data in the Type 1 Diabetes Genetics Consortium

    Get PDF
    Background When collecting phenotypic data in clinics across the globe, the Type 1 Diabetes Genetics Consortium (T1DGC) used several techniques that ensured consistency, completeness, and accuracy of the data

    HLA genotyping in the international Type 1 Diabetes Genetics Consortium

    Get PDF
    Background Although human leukocyte antigen (HLA) DQ and DR loci appear to confer the strongest genetic risk for type 1 diabetes, more detailed information is required for other loci within the HLA region to understand causality and stratify additional risk factors. The Type 1 Diabetes Genetics Consortium (T1DGC) study design included high-resolution genotyping of HLA-A, B, C, DRB1, DQ, and DP loci in all affected sibling pair and trio families, and cases and controls, recruited from four networks worldwide, for analysis with clinical phenotypes and immunological markers

    Dietary outcomes within the study of novel approaches to weight gain prevention (SNAP) randomized controlled trial

    Get PDF
    Abstract Background Young adults (YA) are at high-risk for unhealthy dietary behaviors and weight gain. The Study of Novel Approaches to Weight Gain Prevention (SNAP) Trial demonstrated that two self-regulation approaches were effective in reducing weight gain over 2 years compared with control. The goal of this analysis was to examine effects of intervention on dietary outcomes and the association of diet changes with weight change. Methods Participants were 599 YA, age 18–35 years, BMI 21.0–30.0 kg/m2 (27.4 ± 4.4 years; 25.4 ± 2.6 kg/m2; 22% men; 73% non-Hispanic White), who were recruited in Providence, RI and Chapel Hill, NC and randomized to self-regulation with Small Changes (SC), self-regulation with Large Changes (LC) or Control (C). SC and LC emphasized frequent self-weighing to cue behavior changes (small daily changes vs. periodic large changes) and targeted high-risk dietary behaviors. Diet and weight were assessed at baseline, 4 months and 2 years. Results LC and SC had greater decreases in energy intake than C at 4 months but not 2 years. LC had the greatest changes in percent calories from fat at 4 months, but differences were attenuated at 2 years. No differences in diet quality were observed. Across conditions, increased total energy consumption, fast food, meals away from home, and binge drinking, and decreased dietary quality and breakfast consumption were all associated with weight gain at 2 years. Conclusions This study suggests the need to strengthen interventions to produce longer term changes in dietary intake and helps to identify specific behaviors associated with weight gain over time in young adults. Trial registration Clinicaltrials.gov # NCT01183689 , registered August 18, 2010

    Designing and implementing sample and data collection for an international genetics study: the Type 1 Diabetes Genetics Consortium

    No full text
    Background and Purpose The Type 1 Diabetes Genetics Consortium (T1DGC) is an international project whose primary aims are to: (a) discover genes that modify type 1 diabetes risk; and (b) expand upon the existing genetic resources for type 1 diabetes research. The initial goal was to collect 2500 affected sibling pair (ASP) families worldwide. Methods T1DGC was organized into four regional networks (Asia-Pacific, Europe, North America, and the United Kingdom) and a Coordinating Center. A Steering Committee, with representatives from each network, the Coordinating Center, and the funding organizations, was responsible for T1DGC operations. The Coordinating Center, with regional network representatives, developed study documents and data systems. Each network established laboratories for: DNA extraction and cell line production; human leukocyte antigen genotyping; and autoantibody measurement. Samples were tracked from the point of collection, processed at network laboratories and stored for deposit at National Institute for Diabetes and Digestive and Kidney Diseases (NIDDK) Central Repositories. Phenotypic data were collected and entered into the study database maintained by the Coordinating Center. Results T1DGC achieved its original ASP recruitment goal. In response to research design changes, the T1DGC infrastructure also recruited trios, cases, and controls. Results of genetic analyses have identified many novel regions that affect susceptibility to type 1 diabetes. T1DGC created a resource of data and samples that is accessible to the research community. Limitations Participation in T1DGC was declined by some countries due to study requirements for the processing of samples at network laboratories and/or final deposition of samples in NIDDK Central Repositories. Re-contact of participants was not included in informed consent templates, preventing collection of additional samples for functional studies. Conclusions T1DGC implemented a distributed, regional network structure to reach ASP recruitment targets. The infrastructure proved robust and flexible enough to accommodate additional recruitment. T1DGC has established significant resources that provide a basis for future discovery in the study of type 1 diabetes genetics.Joan E Hilner, Letitia H Perdue, Elizabeth G Sides, June J Pierce, Ana M Wägner, Alan Aldrich, Amanda Loth, Lotte Albret, Lynne E Wagenknecht, Concepcion Nierras, Beena Akolkar and the T1DG
    corecore