291 research outputs found

    Oral activated charcoal prevents experimental cerebral malaria in mice and in a randomized controlled clinical trial in man did not interfere with the pharmacokinetics of parenteral artesunate.

    Get PDF
    BACKGROUND: Safe, cheap and effective adjunct therapies preventing the development of, or reducing the mortality from, severe malaria could have considerable and rapid public health impact. Oral activated charcoal (oAC) is a safe and well tolerated treatment for acute poisoning, more recently shown to have significant immunomodulatory effects in man. In preparation for possible efficacy trials in human malaria, we sought to determine whether oAC would i) reduce mortality due to experimental cerebral malaria (ECM) in mice, ii) modulate immune and inflammatory responses associated with ECM, and iii) affect the pharmacokinetics of parenteral artesunate in human volunteers. METHODS/PRINCIPAL FINDINGS: We found that oAC provided significant protection against P. berghei ANKA-induced ECM, increasing overall survival time compared to untreated mice (p<0.0001; hazard ratio 16.4; 95% CI 6.73 to 40.1). Protection from ECM by oAC was associated with reduced numbers of splenic TNF(+) CD4(+) T cells and multifunctional IFNgamma(+)TNF(+) CD4(+) and CD8(+) T cells. Furthermore, we identified a whole blood gene expression signature (68 genes) associated with protection from ECM. To evaluate whether oAC might affect current best available anti-malarial treatment, we conducted a randomized controlled open label trial in 52 human volunteers (ISRCTN NR. 64793756), administering artesunate (AS) in the presence or absence of oAC. We demonstrated that co-administration of oAC was safe and well-tolerated. In the 26 subjects further analyzed, we found no interference with the pharmacokinetics of parenteral AS or its pharmacologically active metabolite dihydroartemisinin. CONCLUSIONS/SIGNIFICANCE: oAC protects against ECM in mice, and does not interfere with the pharmacokinetics of parenteral artesunate. If future studies succeed in establishing the efficacy of oAC in human malaria, then the characteristics of being inexpensive, well-tolerated at high doses and requiring no sophisticated storage would make oAC a relevant candidate for adjunct therapy to reduce mortality from severe malaria, or for immediate treatment of suspected severe malaria in a rural setting. TRIAL REGISTRATION: Controlled-Trials.com ISRCTN64793756

    Familial congenital cyanosis caused by Hb-MYantai(α-76 GAC → TAC, Asp → Tyr)

    Get PDF
    Methemoglobin (Hb-M) is a rare hemoglobinopathy in China. We hereby report on a family living in Yantai, East China, with congenital cyanosis due to Hb-M mutation. The proband, a 65-year-old female, presented 63% oxygen saturation. Both Hb-M concentration and arterial oxygen saturation remained unchanged, even following intravenous treatment with methylene blue. There was also no change in blood-color (chocolate-brown) after adding 0.1% KCN. A fast-moving band (Hb-X) in hemolysates was found by cellulose acetate electrophoresis, the Hb-X/Hb-A ratio exceeding 10%. GT transition at 131nt of exon 2, although present in one of the α2 -globin alleles, was not found in α1 -globin alleles as a whole. This mutation leads to the aspartic acid to tyrosine substitution (Asp76Tyr). In this family, the novel mutation in the α2 -globin gene resulted in a rare form of congenital cyanosis due to Hb-M. This hemoglobin was named Hb-M Yantai

    Hypoxia Regulates BMP4 Expression in the Murine Spleen during the Recovery from Acute Anemia

    Get PDF
    Bone marrow erythropoiesis is primarily homeostatic, producing new erythrocytes at a constant rate. However at times of acute anemia, new erythrocytes must be rapidly produced much faster than bone marrow steady state erythropoiesis. At these times stress erythropoiesis predominates. Stress erythropoiesis occurs in the fetal liver during embryogenesis and in the adult spleen and liver. In adult mice, stress erythropoiesis utilizes a specialized population of stress erythroid progenitors that are resident in the spleen. In response to acute anemia, these progenitors rapidly expand and differentiate in response to three signals, BMP4, SCF and hypoxia. In absence of acute anemic stress, two of these signals, BMP4 and hypoxia, are not present and the pathway is not active. The initiating event in the activation of this pathway is the up-regulation of BMP4 expression in the spleen.In this paper we analyze the regulation of BMP4 expression in the spleen by hypoxia. Using stromal cell lines, we establish a role for hypoxia transcription factor HIFs (Hypoxia Inducible Factors) in the transcription of BMP4. We identified putative Hypoxia Responsive Elements (HREs) in the BMP4 gene using bioinformatics. Analysis of these elements showed that in vivo, Hif2alpha binds two cis regulatory sites in the BMP4 gene, which regulate BMP4 expression during the recovery from acute anemia.These data show that hypoxia plays a key role in initiating the BMP4 dependent stress erythropoiesis pathway by regulating BMP4 expression

    The von Hippel-Lindau Chuvash mutation in mice alters cardiac substrate and high energy phosphate metabolism

    Get PDF
    Hypoxia-inducible factor (HIF) appears to function as a global master regulator of cellular and systemic responses to hypoxia. HIF-pathway manipulation is of therapeutic interest, however global, systemic upregulation of HIF may have as yet unknown effects on multiple processes. We utilized a mouse model of Chuvash polycythemia (CP), a rare genetic disorder which modestly increases expression of HIF target genes in normoxia, to understand what these effects might be within the heart. An integrated in and ex vivo approach was employed. In comparison to wild-type controls, CP mice had evidence (using in vivo MRI) of pulmonary hypertension, right ventricular hypertrophy, and increased left ventricular ejection fraction. Glycolytic flux (measured using 3H glucose) in the isolated, contracting, perfused CP heart was 1.8-fold higher. Net lactate efflux was 1.5-fold higher. Furthermore, in vivo 13C magnetic resonance spectroscopy (MRS) of hyperpolarized 13C1 pyruvate revealed a 2-fold increase in real-time flux through lactate dehydrogenase in the CP hearts, and a 1.6-fold increase through pyruvate dehydrogenase. 31P MRS of perfused CP hearts under increased workload (isoproterenol infusion) demonstrated increased depletion of phosphocreatine relative to ATP. Intriguingly, no changes in cardiac gene expression were detected. In summary, a modest systemic dysregulation of the HIF pathway resulted in clear alterations in cardiac metabolism and energetics. However, in contrast to studies generating high HIF levels within the heart, the CP mice showed neither the predicted changes in gene expression nor any degree of LV impairment. We conclude that the effects of manipulating HIF on the heart are dose-dependent. New and noteworthy This is the first integrative metabolic and functional study of the effects of modest HIF manipulation within the heart. Of particular note, the combination (and correlation) of perfused heart metabolic flux measurements with the new technique of real-time in vivo MR spectroscopy using hyperpolarized pyruvate is a novel development

    Strategy selection and outcome prediction in sport using dynamic learning for stochastic processes

    Get PDF
    We study reliability equivalence factors of a system of independent and identical components with exponentiated Weibull lifetimes. The system has n subsystems connected in parallel and subsystem i has mi components connected in series, i=1,…,n. We consider improving the reliability of the system by (a) a reduction method and (b) several duplication methods: (i) hot duplication; (ii) cold duplication with perfect switching; (iii) cold duplication with imperfect switching. We compute two types of reliability equivalence factors: survival equivalence factors and mean equivalence factors. Although our methods adapt to allow for general lifetime models, we use the exponentiated Weibull distribution because it is flexible and enables comparisons with other reliability equivalence studies. The example we present demonstrates the potential for applying these methods to address specific questions that arise when attempting to improve the reliability of simple systems or simple configurations of possibly complex subsystems in many diverse applications

    Quantitative Proteomics Identifies the Myb-Binding Protein p160 as a Novel Target of the von Hippel-Lindau Tumor Suppressor

    Get PDF
    Background: The von Hippel-Lindau (VHL) tumor suppressor gene encodes a component of a ubiquitin ligase complex, which is best understood as a negative regulator of hypoxia inducible factor (HIF). VHL ubiquitinates and degrades the a subunits of HIF, and this is proposed to suppress tumorigenesis and tumor angiogenesis. However, several lines of evidence suggest that there are unidentified substrates or targets for VHL that play important roles in tumor suppression. Methodology/Principal Findings: Employing quantitative proteomics, we developed an approach to systematically identify the substrates of ubiquitin ligases and using this method, we identified the Myb-binding protein p160 as a novel substrate of VHL. Conclusions/Significance: A major barrier to understanding the functions of ubiquitin ligases has been the difficulty in pinpointing their ubiquitination substrates. The quantitative proteomics approach we devised for the identification of VHL substrates will be widely applicable to other ubiquitin ligases
    • …
    corecore