11 research outputs found

    Global bundle adjustment with variable orientation point distance for precise mars express orbit reconstruction

    Get PDF
    The photogrammetric bundle adjustment of line scanner image data requires a precise description of the time-dependent image orientation. For this task exterior orientation parameters of discrete points are used to model position and viewing direction of a camera trajectory via polynomials. This paper investigates the influence of the distance between these orientation points on the quality of trajectory modeling. A new method adapts the distance along the trajectory to the available image information. Compared to a constant distance as used previously, a better reconstruction of the exterior orientation is possible, especially when image quality changes within a strip. In our research we use image strips of the High Resolution Stereo Camera (HRSC), taken to map the Martian surface. Several experiments on the global image data set have been carried out to investigate how the bundle adjustment improves the image orientation, if the new method is employed. For evaluation the forward intersection errors of 3D points derived from HRSC images, as well as their remaining height differences to the MOLA DTM are used. In 13.5 % (515 of 3,828) of the image strips, taken during this ongoing mission over the last 12 years, high frequency image distortions were found. Bundle adjustment with a constant orientation point distance was able to reconstruct the orbit in 239 (46.4 %) cases. A variable orientation point distance increased this number to 507 (98.6 %).German Federal Ministry for Economic Affairs and Energy (BMWi)German Aerospace Center (DLR)/50 QM 130

    The NeuARt II system: a viewing tool for neuroanatomical data based on published neuroanatomical atlases

    Get PDF
    BACKGROUND: Anatomical studies of neural circuitry describing the basic wiring diagram of the brain produce intrinsically spatial, highly complex data of great value to the neuroscience community. Published neuroanatomical atlases provide a spatial framework for these studies. We have built an informatics framework based on these atlases for the representation of neuroanatomical knowledge. This framework not only captures current methods of anatomical data acquisition and analysis, it allows these studies to be collated, compared and synthesized within a single system. RESULTS: We have developed an atlas-viewing application ('NeuARt II') in the Java language with unique functional properties. These include the ability to use copyrighted atlases as templates within which users may view, save and retrieve data-maps and annotate them with volumetric delineations. NeuARt II also permits users to view multiple levels on multiple atlases at once. Each data-map in this system is simply a stack of vector images with one image per atlas level, so any set of accurate drawings made onto a supported atlas (in vector graphics format) could be uploaded into NeuARt II. Presently the database is populated with a corpus of high-quality neuroanatomical data from the laboratory of Dr Larry Swanson (consisting 64 highly-detailed maps of PHAL tract-tracing experiments, made up of 1039 separate drawings that were published in 27 primary research publications over 17 years). Herein we take selective examples from these data to demonstrate the features of NeuArt II. Our informatics tool permits users to browse, query and compare these maps. The NeuARt II tool operates within a bioinformatics knowledge management platform (called 'NeuroScholar') either as a standalone or a plug-in application. CONCLUSION: Anatomical localization is fundamental to neuroscientific work and atlases provide an easily-understood framework that is widely used by neuroanatomists and non-neuroanatomists alike. NeuARt II, the neuroinformatics tool presented here, provides an accurate and powerful way of representing neuroanatomical data in the context of commonly-used brain atlases for visualization, comparison and analysis. Furthermore, it provides a framework that supports the delivery and manipulation of mapped data either as a standalone system or as a component in a larger knowledge management system

    Towards coordinated regional multi-satellite InSAR volcano observations:results from the Latin America pilot project

    Get PDF
    Within Latin America, about 319 volcanoes have been active in the Holocene, but 202 of these volcanoes have no seismic, deformation or gas monitoring. Following the 2012 Santorini Report on satellite Earth Observation and Geohazards, the Committee on Earth Observation Satellites (CEOS) developed a 4-year pilot project (2013-2017) to demonstrate how satellite observations can be used to monitor large numbers of volcanoes cost-effectively, particularly in areas with scarce instrumentation and/or difficult access. The pilot aims to improve disaster risk management (DRM) by working directly with the volcano observatories that are governmentally responsible for volcano monitoring as well as with the international space agencies (ESA, CSA, ASI, DLR, JAXA, NASA, CNES). The goal is to make sure that the most useful data are collected at each volcano following the guidelines of the Santorini report that observation frequency is related to volcano activity, and to communicate the results to the local institutions in a timely fashion. Here we highlight how coordinated multi-satellite observations have been used by volcano observatories to monitor volcanoes and respond to crises. Our primary tool is measurements of ground deformation made by Interferometric Synthetic Aperture Radar (InSAR), which have been used in conjunction with other observations to determine the alert level at these volcanoes, served as an independent check on ground sensors, guided the deployment of ground instruments, and aided situational awareness. During this time period, we find 26 volcanoes deforming, including 18 of the 28 volcanoes that erupted – those eruptions without deformation were less than 2 on the VEI scale. Another 7 volcanoes were restless and the volcano observatories requested satellite observations, but no deformation was detected. We describe the lessons learned about the data products and information that are most needed by the volcano observatories in the different countries using information collected by questionnaires. We propose a practical strategy for regional to global satellite volcano monitoring for use by volcano observatories in Latin America and elsewhere to realize the vision of the Santorini report

    COMMON APPROACH TO GEOPROCESSING OF UAV DATA ACROSS APPLICATION DOMAINS

    No full text
    UAVs are a disruptive technology bringing new geographic data and information to many application domains. UASs are similar to other geographic imagery systems so existing frameworks are applicable. But the diversity of UAVs as platforms along with the diversity of available sensors are presenting challenges in the processing and creation of geospatial products. Efficient processing and dissemination of the data is achieved using software and systems that implement open standards. The challenges identified point to the need for use of existing standards and extending standards. Results from the use of the OGC Sensor Web Enablement set of standards are presented. Next steps in the progress of UAVs and UASs may follow the path of open data, open source and open standards

    Oblique aerial imagery for NMA: some best practices

    No full text
    Oblique airborne photogrammetry is rapidly maturing and being offered by service providers as a good alternative or replacement of the more traditional vertical imagery and for very different applications see Figure1). EuroSDR, representing European National Mapping Agencies (NMAs) and research organizations of most EU states, is following the development of oblique aerial cameras since 2013, when an ongoing activity was created to continuously update its members on the developments in this technology. Nowadays most European NMAs still rely on the traditional workflow based on vertical photography but changes are slowly taking place also at production level. Some NMAs have already run some tests internally to understand the potential for their needs whereas other agencies are discussing on the future role of this technology and how to possibly adapt their production pipelines. At the same time, some research institutions and academia demonstrated the potentialities of oblique aerial datasets to generate textured 3D city models or large building block models. The paper provides an overview of tests, best practices and considerations coming from the R&D community and from three European NMAs concerning the use of oblique aerial imagery
    corecore