4,181 research outputs found
Metamorphism and plutonism in the Quetico Belt, Superior Province, N.W. Ontario
The Quetico Belt lies between the metavolcanic Wawa-Shebandowan and Wabigoon Belts. It consists of marginal metasedimentary rocks and central pelitic, gneissic and plutonic rocks. Metamorphism is Barrovian, at depths less than 10 km, and grade increases from margins to core of the belt: the outermost pelites are at chlorite-muscovite grade; inward a garnet-andalusite zone formed throughout the inner margin; and the central zone ranges form garnet-andalusite in the west and garnet-sillimanite-muscovite to garnet-sillimanite-cordierite and rare kyanite 6 to 150 km to the east. This increase is correlated with granitic intrusives. Migmatites in the core have intrusive leucosomes in the west and locally derived ones in the east. Isograd surfaces are steep where the belt is narrow and dip gently where it is wide. The Quetico Park intrusive complex of the central region of the Quetico Belt shows a zonation across it 20 to 50 km width from older, medium grained biotite composition to younger, coarse to pegmatitic granitic composition. Sediment of the Quetico basin had its source in the bordering metavolcanic belts and was deposited ca. 2.75 to 2.70 Ga ago. Boundaries of the belt dip inward, so it essentially is a graben of inter-arc or back-arc type
Accretionary origin for the late Archean Ashuanipi Complex of Canada
The Ashuanipi complex is one of the largest massif granulite terrains of the Canadian Shield. It makes up the eastern end of the 2000 km long, lower-grade, east-west belts of the Archean Superior Province, permitting lithological, age and tectonic correlation. Numerous lithological, geochemical and metamorphic similarities to south Indian granulites suggest common processes and invite comparison of tectonic evolution. The Ashuanipi granulite terrain of the Cannadian Superior Province was studied in detail, and an origin through self-melting of a 55 km thick accretionary wedge seems possible
An analytic model for the epoch of halo creation
In this paper we describe the Bayesian link between the cosmological mass
function and the distribution of times at which isolated halos of a given mass
exist. By assuming that clumps of dark matter undergo monotonic growth on the
time-scales of interest, this distribution of times is also the distribution of
`creation' times of the halos. This monotonic growth is an inevitable aspect of
gravitational instability. The spherical top-hat collapse model is used to
estimate the rate at which clumps of dark matter collapse. This gives the prior
for the creation time given no information about halo mass. Applying Bayes'
theorem then allows any mass function to be converted into a distribution of
times at which halos of a given mass are created. This general result covers
both Gaussian and non-Gaussian models. We also demonstrate how the mass
function and the creation time distribution can be combined to give a joint
density function, and discuss the relation between the time distribution of
major merger events and the formula calculated. Finally, we determine the
creation time of halos within three N-body simulations, and compare the link
between the mass function and creation rate with the analytic theory.Comment: 7 pages, 2 figures, submitted to MNRA
Fourier analysis of luminosity-dependent galaxy clustering
We extend the Fourier transform based method for the analysis of galaxy
redshift surveys of Feldman, Kaiser & Peacock (1994: FKP) to model
luminosity-dependent clustering. In a magnitude limited survey, galaxies at
high redshift are more luminous on average than galaxies at low redshift.
Galaxy clustering is observed to increase with luminosity, so the inferred
density field is effectively multiplied by an increasing function of radius.
This has the potential to distort the shape of the recovered power spectrum. In
this paper we present an extension of the FKP analysis method to incorporate
this effect, and present revised optimal weights to maximize the precision of
such an analysis. The method is tested and its accuracy assessed using mock
catalogues of the 2-degree field galaxy redshift survey (2dFGRS). We also show
that the systematic effect caused by ignoring luminosity-dependent bias was
negligible for the initial analysis of the 2dFGRS of Percival et al. (2001).
However, future surveys, sensitive to larger scales, or covering a wider range
of galaxy luminosities will benefit from this refined method.Comment: 9 pages, 4 figures, accepted for publication in MNRA
Age constraints on the evolution of the Quetico belt, Superior Province, Ontario
Much attention has been focused on the nature of Archean tectonic processes and the extent to which they were different from modern rigid-plate tectonics. The Archean Superior Province has linear metavolcanic and metasediment-dominated subprovinces of similar scale to cenozoic island arc-trench systems of the western Pacific, suggesting an origin by accreting arcs. Models of the evolution of metavolcanic belts in parts of the Superior Province suggest an arc setting but the tectonic environment and evolution of the intervening metasedimentary belts are poorly understood. In addition to explaining the setting giving rise to a linear sedimentary basin, models must account for subsequent shortening and high-temperature, low-pressure metamorphism. Correlation of rock units and events in adjacent metavolcanic and metasedimentary belts is a first step toward understanding large-scale crustal interactions. To this end, zircon geochronology has been applied to metavolcanic belts of the western Superior Province; new age data for the Quetico metasedimentary belt is reported, permitting correlation with the adjacent Wabigoon and Wawa metavolcanic subprovinces
Greenstone belts: Their boundaries, surrounding rock terrains and interrelationships
Greenstone belts are an important part of the fragmented record of crustal evolution, representing samples of the magmatic activity that formed much of the Earth's crust. Most belts developed rapidly, in less than 100 Ma, leaving large gaps in the geological record. Surrounding terrains provide information on the context of greenstone belts. The effects of tectonic setting, structural geometry and evolution, associated plutonic activity and sedimentation are discussed
Damped Lyman alpha systems and disk galaxies: number density, column density distribution and gas density
We present a comparison between the observed properties of damped Lyman alpha
systems (DLAs) and the predictions of simple models for the evolution of
present day disk galaxies, including both low and high surface brightness
galaxies. We focus in particular on the number density, column density
distribution and gas density of DLAs, which have now been measured in
relatively large samples of absorbers. From the comparison we estimate the
contribution of present day disk galaxies to the population of DLAs, and how it
varies with redshift. Based on the differences between the models and the
observations, we also speculate on the nature of the fraction of DLAs which
apparently do not arise in disk galaxies.Comment: 11 pages, 10 figures, accepted in MNRA
Formation of Dark Matter Haloes in a Homogeneous Dark Energy Universe
Several independent cosmological tests have shown evidences that the energy
density of the Universe is dominated by a dark energy component, which cause
the present accelerated expansion. The large scale structure formation can be
used to probe dark energy models, and the mass function of dark matter haloes
is one of the best statistical tools to perform this study. We present here a
statistical analysis of mass functions of galaxies under a homogeneous dark
energy model, proposed in the work of Percival (2005), using an observational
flux-limited X-ray cluster survey, and CMB data from WMAP. We compare, in our
analysis, the standard Press-Schechter (PS) approach (where a Gaussian
distribution is used to describe the primordial density fluctuation field of
the mass function), and the PL (Power Law) mass function (where we apply a
nonextensive q-statistical distribution to the primordial density field). We
conclude that the PS mass function cannot explain at the same time the X-ray
and the CMB data (even at 99% confidence level), and the PS best fit dark
energy equation of state parameter is , which is distant from the
cosmological constant case. The PL mass function provides better fits to the
HIFLUGCS X-ray galaxy data and the CMB data; we also note that the
parameter is very sensible to modifications in the PL free parameter, ,
suggesting that the PL mass function could be a powerful tool to constrain dark
energy models.Comment: 4 pages, 2 figures, Latex. Accepted for publication in the
International Journal of Modern Physics D (IJMPD)
Beyond BAO: improving cosmological constraints from BOSS with measurement of the void-galaxy cross-correlation
We present a measurement of the anisotropic void-galaxy cross-correlation
function in the CMASS galaxy sample of the BOSS DR12 data release. We perform a
joint fit to the data for redshift space distortions (RSD) due to galaxy
peculiar velocities and anisotropies due to the Alcock-Paczynski (AP) effect,
for the first time using a velocity field reconstruction technique to remove
the complicating effects of RSD in the void centre positions themselves. Fits
to the void-galaxy function give a 1% measurement of the AP parameter
combination at redshift , where
is the angular diameter distance and the Hubble parameter, exceeding the
precision obtainable from baryon acoustic oscillations (BAO) by a factor of
~3.5 and free of systematic errors. From voids alone we also obtain a 10%
measure of the growth rate, . The parameter
degeneracies are orthogonal to those obtained from galaxy clustering. Combining
void information with that from BAO and galaxy RSD in the same CMASS sample, we
measure (at 0.8% precision),
kmsMpc (1%) and
(4.9%), consistent with cosmic microwave background
(CMB) measurements from Planck. These represent a factor \sim2 improvement in
precision over previous results through the inclusion of void information.
Fitting a flat cosmological constant CDM model to these results in
combination with Planck CMB data, we find up to an 11% reduction in
uncertainties on and compared to use of the corresponding BOSS
consensus values. Constraints on extended models with non-flat geometry and a
dark energy of state that differs from show an even greater improvement.Comment: 22 pages, 15 figures. Accepted for publication in Phys.Rev.D. v2
corrects small error in likelihood analysis; minor changes to figures and
text, cosmological results unchanged. Reconstruction and void-finding code
available at https://github.com/seshnadathur/Revolver, likelihood analysis
code available at https://github.com/seshnadathur/void-galaxy-cosmo-fitte
- …