458 research outputs found
A challenge to the Delta G~0 interpretation of hydrogen evolution
Platinum is a nearly perfect catalyst for the hydrogen evolution reaction,
and its high activity has conventionally been explained by its
close-to-thermoneutral hydrogen binding energy (G~0). However, many candidate
non-precious metal catalysts bind hydrogen with similar strengths, but exhibit
orders-of-magnitude lower activity for this reaction. In this study, we employ
electronic structure methods that allow fully potential-dependent reaction
barriers to be calculated, in order to develop a complete working picture of
hydrogen evolution on platinum. Through the resulting ab initio microkinetic
models, we assess the mechanistic origins of Pt's high activity. Surprisingly,
we find that the G~0 hydrogen atoms are kinetically inert, and that the
kinetically active hydrogen atoms have G's much weaker, similar to that of
gold. These on-top hydrogens have particularly low barriers, which we compare
to those of gold, explaining the high reaction rates, and the exponential
variations in coverages can uniquely explain Pt's strong kinetic response to
the applied potential. This explains the unique reactivity of Pt that is missed
by conventional Sabatier analyses, and suggests true design criteria for
non-precious alternatives
Split-screen single-camera stereoscopic PIV application to a turbulent confined swirling layer with free surface
An annular liquid wall jet, or vortex tube, generated by helical injection inside a tube is studied experimentally as a possible means of fusion reactor shielding. The hollow confined vortex/swirling layer exhibits simultaneously all the complexities of swirling turbulence, free surface, droplet formation, bubble entrapment; all posing challenging diagnostic issues. The construction of flow apparatus and the choice of working liquid and seeding particles facilitate unimpeded optical access to the flow field. A split-screen, single-camera stereoscopic particle image velocimetry (SPIV) scheme is employed for flow field characterization. Image calibration and free surface identification issues are discussed. The interference in measurements of laser beam reflection at the interface are identified and discussed. Selected velocity measurements and turbulence statistics are presented at Re_λ = 70 (Re = 3500 based on mean layer thickness)
Scaled and Dynamic Optimizations of Nudged Elastic Bands
We present a modified nudged elastic band routine that can reduce the number
of force calls by more than 50% for bands with non-uniform convergence. The
method, which we call "dyNEB", dynamically and selectively optimizes states
based on the perpendicular forces and parallel spring forces acting on that
region of the band. The convergence criteria are scaled to focus on the region
of interest, i.e., the saddle point, while maintaining continuity of the band
and avoiding truncation. We show that this method works well for solid state
reaction barriers---non-electrochemical in general and electrochemical in
particular---and that the number of force calls can be significantly reduced
without loss of resolution at the saddle point
Subnational Government Bailouts in OECD Countries: Four Case Studies
We present four case studies of bailouts of subnational governments in Australia, Germany, Italy and Sweden. The case studies show that bailouts can occur in a diverse set of institutions shaping the relations between central and subnational governments. Surpisingly, there is little evidence in favor of the `too big to fail` argument explaining bailouts. In contrast, elements of political favoritism play some role in most cases. The cases also indicate the importance of properly designing principal-agent relationships in the decentralization of public finances. Constitutional mandates for uniform provision of public services and attempts by the central government to dominate subnational governments in matters of fiscal policy seem to be conducive to bailouts.
EXPRESSION OF A FUNCTIONAL CHIMERIC lg-MHC CLASS II PROTEIN
composed of the a- and ß-chains of the MHC class I1
I-E molecule fused to antibody V regions derived
from anti-human CD4 mAb MT310. Expression vectors
were constructed containing the functional,
rearranged gene segments coding for the V region
domains of the antibody H and L chains in place of
the first domains of the complete structural genes
of the I-E a- and ß-chains, respectively. Celltsr ansfected
with both hybrid genes expressed a stable
protein product on the cell surface. The chimeric
molecule exhibited the idiotype of the antibody
MT310 as shown by binding to the anti-idiotypic
mAb 20-46. A protein of the anticipated molecular
mass was immunoprecipitated witha nti-mouse IgG
antiserum. Furthermore, human soluble CD4 did
bind to thetr ansfected cell line, demonstrating that
the chimeric protein possessed the binding capacity
of the original mAb. Thus, the hybrid molecule retained:
1) the properties of a MHC class I1 protein
with regardt o correct chain assembly and transport
to the cell surface: as well as 2) the Ag binding
capacity of the antibody genes used. Thgee neration
of hybrid MHC class I1 molecules with highly specific,
non-MHC-restricted bindingc apacities will be
useful for studying MHC class 11-mediated effector
functions such as selection of the T cell repertoire
in thymus of transgenic mice
Recommended from our members
An overview of modeling methods for thermal mixing and stratification in large enclosures for reactor safety analysis
Thermal mixing and stratification phenomena play major roles in the safety of reactor systems with large enclosures, such as containment safety in current fleet of LWRs, long-term passive containment cooling in Gen III+ plants including AP-1000 and ESBWR, the cold and hot pool mixing in pool type sodium cooled fast reactor systems (SFR), and reactor cavity cooling system behavior in high temperature gas cooled reactors (HTGR), etc. Depending on the fidelity requirement and computational resources, 0-D steady state models (heat transfer correlations), 0-D lumped parameter based transient models, 1-D physical-based coarse grain models, and 3-D CFD models are available. Current major system analysis codes either have no models or only 0-D models for thermal stratification and mixing, which can only give highly approximate results for simple cases. While 3-D CFD methods can be used to analyze simple configurations, these methods require very fine grid resolution to resolve thin substructures such as jets and wall boundaries. Due to prohibitive computational expenses for long transients in very large volumes, 3-D CFD simulations remain impractical for system analyses. For mixing in stably stratified large enclosures, UC Berkeley developed 1-D models basing on Zuber’s hierarchical two-tiered scaling analysis (HTTSA) method where the ambient fluid volume is represented by 1-D transient partial differential equations and substructures such as free or wall jets are modeled with 1-D integral models. This allows very large reductions in computational effort compared to 3-D CFD modeling. This paper will present an overview on important thermal mixing and stratification phenomena in large enclosures for different reactors, major modeling methods and their advantages and limits, potential paths to improve simulation capability and reduce analysis uncertainty in this area for advanced reactor system analysis tools
EXPERIMENTAL INVESTIGATION OF MIXED CONVECTION HEAT TRANSFER CAUSED BY FORCED-JETS IN LARGE ENCLOSURE
ABSTRACT This research investigates experimentally mixed convection and heat transfer augmentation by forced jets in a large enclosure, at conditions simulating those of actual passive containment cooling systems and scales approaching those of actual containment buildings or compartments. The experiment was designed to measure the key parameters governing the heat transfer augmentation by forced jets and investigate the effects of geometric factors, including the jet diameter, jet injection orientation, interior structures, and enclosure aspect ratio. The tests cover a variety of injection modes leading to flow configurations of interest that contribute to reveal the nature of mixing and stratification phenomena in the containment under accident conditions of interest. By nondimensionalizing the governing equations, the heat transfer of mixed convection can be predicted to be controlled by jet Archimedes number and geometric factors. Using a combining rule for mixed convection and appropriate forced and natural convection models, the correlations of heat transfer augmentation by forced jets are developed and then tested by experimental data. The effects of jet diameter, injection orientation, interior structures, and enclosure aspect ratio on heat transfer augmentation are illustrated with analysis of experimental results
Recommended from our members
One-Dimensional Analysis of Thermal Stratification in AHTR and SFR Coolant Pools
Thermal stratification phenomena are very common in pool type reactor systems, such as the liquid-salt cooled Advanced High Temperature Reactor (AHTR) and liquid-metal cooled fast reactor systems such as the Sodium Fast Reactor (SFR). It is important to accurately predict the temperature and density distributions both for design optimation and accident analysis. Current major reactor system analysis codes such as RELAP5 (for LWR’s, and recently extended to analyze high temperature reactors), TRAC (for LWR’s), and SASSYS (for liquid metal fast reactors) only provide lumped-volume based models which can only give very approximate results and can only handle simple cases with one mixing source. While 2-D or 3-D CFD methods can be used to analyze simple configurations, these methods require very fine grid resolution to resolve thin substructures such as jets and wall boundaries, yet such fine grid resolution is difficult or impossible to provide for studying the reactor response to transients due to computational expense. Therefore, new methods are needed to support design optimization and safety analysis of Generation IV pool type reactor systems. Previous scaling has shown that stratified mixing processes in large stably stratified enclosures can be described using one-dimensional differential equations, with the vertical transport by free and wall jets modeled using standard integral techniques. This allows very large reductions in computational effort compared to three-dimensional numerical modeling of turbulent mixing in large enclosures. The BMIX++ (Berkeley mechanistic MIXing code in C++) code was originally developed at UC Berkeley to implement such ideas. This code solves mixing and heat transfer problems in stably stratified enclosures. The code uses a Lagrangian approach to solve 1-D transient governing equations for the ambient fluid and uses analytical or 1-D integral models to compute substructures. By including liquid salt properties, BMIX++ code is extended to analyze liquid salt pool systems in the current AHTR design, to provide an example of its application. Similar analysis is possible for liquid-metal cooled reactors. The current AHTR baseline design uses a large buffer salt tank to provide more thermal inertial and safety margin. Reactor vessel, intermediate heat exchangers, pool reactor auxiliary cooling system heat exchangers (PHX), and direct reactor auxiliary cooling system heat exchangers (DHX) are all immerged in the buffer salt pool. These structures provide major driving sources for vertical mixing and thermal stratification. Predication of the temperature distribution within the buffer salt tank directly affects the major safety systems design, such as the PHX and DHX, safety analysis results, and structure thermal stresses analysis. The BMIX++ code is used to predict mixing and thermal stratification in this pool system. This example shows the potential of 1-D analysis methods and BMIX++ to be included in system analysis codes for pool type of Gen-IV reactor systems
- …