7,339 research outputs found

    Quantum Typicality and Initial Conditions

    Full text link
    If the state of a quantum system is sampled out of a suitable ensemble, the measurement of some observables will yield (almost) always the same result. This leads us to the notion of quantum typicality: for some quantities the initial conditions are immaterial. We discuss this problem in the framework of Bose-Einstein condensates.Comment: 8 page

    Multipartite entanglement and few-body Hamiltonians

    Full text link
    We investigate the possibility to obtain higly multipartite-entangled states as nondegenerate eigenstates of Hamiltonians that involve only short-range and few-body interactions. We study small-size systems (with a number of qubits ranging from three to five) and search for Hamiltonians with a Maximally Multipartite Entangled State (MMES) as a nondegenerate eigenstate. We then find conditions, including bounds on the number of coupled qubits, to build a Hamiltonian with a Greenberger-Horne-Zeilinger (GHZ) state as a nondegenerate eigenstate. We finally comment on possible applications.Comment: 15 pages, 3 figures. Proceedings of IQIS 2013 to appear on IJQ

    Long-lived entanglement of two multilevel atoms in a waveguide

    Full text link
    We study the presence of nontrivial bound states of two multilevel quantum emitters and the photons propagating in a linear waveguide. We characterize the conditions for the existence of such states and determine their general properties, focusing in particular on the entanglement between the two emitters, that increases with the number of excitations. We discuss the relevance of the results for entanglement preservation and generation by spontaneous relaxation processes.Comment: 6 pages, 1 figur

    Correlation plenoptic imaging

    Full text link
    Plenoptic imaging is a promising optical modality that simultaneously captures the location and the propagation direction of light in order to enable three-dimensional imaging in a single shot. However, in classical imaging systems, the maximum spatial and angular resolutions are fundamentally linked; thereby, the maximum achievable depth of field is inversely proportional to the spatial resolution. We propose to take advantage of the second-order correlation properties of light to overcome this fundamental limitation. In this paper, we demonstrate that the momentum/position correlation of chaotic light leads to the enhanced refocusing power of correlation plenoptic imaging with respect to standard plenoptic imaging.Comment: 6 pages, 3 figure

    Huygens' principle and Dirac-Weyl equation

    Full text link
    We investigate the validity of Huygens' principle for forward propagation in the massless Dirac-Weyl equation. The principle holds for odd space dimension n, while it is invalid for even n. We explicitly solve the cases n=1,2 and 3 and discuss generic nn. We compare with the massless Klein-Gordon equation and comment on possible generalizations and applications.Comment: 7 pages, 1 figur

    Typical observables in a two-mode Bose system

    Full text link
    A class of k-particle observables in a two-mode system of Bose particles is characterized by typicality: if the state of the system is sampled out of a suitable ensemble, an experimental measurement of that observable yields (almost) always the same result. We investigate the general features of typical observables, the criteria to determine typicality and finally focus on the case of density correlation functions, which are related to spatial distribution of particles and interference.Comment: 8 pages, 1 figur

    Signal-to-noise properties of correlation plenoptic imaging with chaotic light

    Full text link
    Correlation Plenoptic Imaging (CPI) is a novel imaging technique, that exploits the correlations between the intensity fluctuations of light to perform the typical tasks of plenoptic imaging (namely, refocusing out-of-focus parts of the scene, extending the depth of field, and performing 3D reconstruction), without entailing a loss of spatial resolution. Here, we consider two different CPI schemes based on chaotic light, both employing ghost imaging: the first one to image the object, the second one to image the focusing element. We characterize their noise properties in terms of the signal-to-noise ratio (SNR) and compare their performances. We find that the SNR can be significantly higher and easier to control in the second CPI scheme, involving standard imaging of the object; under adequate conditions, this scheme enables reducing by one order of magnitude the number of frames for achieving the same SNR.Comment: 12 pages, 3 figure

    Tricriticalities and Quantum Phases in Spin-Orbit-Coupled Spin-11 Bose Gases

    Get PDF
    We study the zero-temperature phase diagram of a spin-orbit-coupled Bose-Einstein condensate of spin 11, with equally weighted Rashba and Dresselhaus couplings. Depending on the antiferromagnetic or ferromagnetic nature of the interactions, we find three kinds of striped phases with qualitatively different behaviors in the modulations of the density profiles. Phase transitions to the zero-momentum and the plane-wave phases can be induced in experiments by independently varying the Raman coupling strength and the quadratic Zeeman field. The properties of these transitions are investigated in detail, and the emergence of tricritical points, which are the direct consequence of the spin-dependent interactions, is explicitly discussed.Comment: 6 pages, 2 figures + Supplemental Material. Revised version, published in PR

    Correlation Plenoptic Imaging With Entangled Photons

    Full text link
    Plenoptic imaging is a novel optical technique for three-dimensional imaging in a single shot. It is enabled by the simultaneous measurement of both the location and the propagation direction of light in a given scene. In the standard approach, the maximum spatial and angular resolutions are inversely proportional, and so are the resolution and the maximum achievable depth of focus of the 3D image. We have recently proposed a method to overcome such fundamental limits by combining plenoptic imaging with an intriguing correlation remote-imaging technique: ghost imaging. Here, we theoretically demonstrate that correlation plenoptic imaging can be effectively achieved by exploiting the position-momentum entanglement characterizing spontaneous parametric down-conversion (SPDC) photon pairs. As a proof-of-principle demonstration, we shall show that correlation plenoptic imaging with entangled photons may enable the refocusing of an out-of-focus image at the same depth of focus of a standard plenoptic device, but without sacrificing diffraction-limited image resolution.Comment: 12 pages, 5 figure
    corecore