We study the zero-temperature phase diagram of a spin-orbit-coupled
Bose-Einstein condensate of spin 1, with equally weighted Rashba and
Dresselhaus couplings. Depending on the antiferromagnetic or ferromagnetic
nature of the interactions, we find three kinds of striped phases with
qualitatively different behaviors in the modulations of the density profiles.
Phase transitions to the zero-momentum and the plane-wave phases can be induced
in experiments by independently varying the Raman coupling strength and the
quadratic Zeeman field. The properties of these transitions are investigated in
detail, and the emergence of tricritical points, which are the direct
consequence of the spin-dependent interactions, is explicitly discussed.Comment: 6 pages, 2 figures + Supplemental Material. Revised version,
published in PR