6,479 research outputs found

    When is the deconfinement phase transition universal?

    Full text link
    Pure Yang-Mills theory has a finite-temperature phase transition, separating the confined and deconfined bulk phases. Svetitsky and Yaffe conjectured that if this phase transition is of second order, it belongs to the universality class of transitions for particular scalar field theories in one lower dimension. We examine Yang-Mills theory with the symplectic gauge groups Sp(N). We find new evidence supporting the Svetitsky-Yaffe conjecture and make our own conjecture as to which gauge theories have a universal second order deconfinement phase transition.Comment: 5 pages, 4 figures; Contribution to Confinement 2003, Tokyo, Japan, July 21-24, 200

    Rotor Spectra, Berry Phases, and Monopole Fields: from Antiferromagnets to QCD

    Full text link
    The order parameter of a finite system with a spontaneously broken continuous global symmetry acts as a quantum mechanical rotor. Both antiferromagnets with a spontaneously broken SU(2)sSU(2)_s spin symmetry and massless QCD with a broken SU(2)L×SU(2)RSU(2)_L \times SU(2)_R chiral symmetry have rotor spectra when considered in a finite volume. When an electron or hole is doped into an antiferromagnet or when a nucleon is propagating through the QCD vacuum, a Berry phase arises from a monopole field and the angular momentum of the rotor is quantized in half-integer units.Comment: 4 page

    Drastic Reduction of Cutoff Effects in 2-d Lattice O(N) Models

    Get PDF
    We investigate the cutoff effects in 2-d lattice O(N) models for a variety of lattice actions, and we identify a class of very simple actions for which the lattice artifacts are extremely small. One action agrees with the standard action, except that it constrains neighboring spins to a maximal relative angle delta. We fix delta by demanding that a particular value of the step scaling function agrees with its continuum result already on a rather coarse lattice. Remarkably, the cutoff effects of the entire step scaling function are then reduced to the per mille level. This also applies to the theta-vacuum effects of the step scaling function in the 2-d O(3) model. The cutoff effects of other physical observables including the renormalized coupling and the mass in the isotensor channel are also reduced drastically. Another choice, the mixed action, which combines the standard quadratic with an appropriately tuned large quartic term, also has extremely small cutoff effects. The size of cutoff effects is also investigated analytically in 1-d and at N = infinity in 2-d.Comment: 39 pages, 18 figure

    Color Screening, Casimir Scaling, and Domain Structure in G(2) and SU(N) Gauge Theories

    Get PDF
    We argue that screening of higher-representation color charges by gluons implies a domain structure in the vacuum state of non-abelian gauge theories, with the color magnetic flux in each domain quantized in units corresponding to the gauge group center. Casimir scaling of string tensions at intermediate distances results from random spatial variations in the color magnetic flux within each domain. The exceptional G(2) gauge group is an example rather than an exception to this picture, although for G(2) there is only one type of vacuum domain, corresponding to the single element of the gauge group center. We present some numerical results for G(2) intermediate string tensions and Polyakov lines, as well as results for certain gauge-dependent projected quantities. In this context, we discuss critically the idea of projecting link variables to a subgroup of the gauge group. It is argued that such projections are useful only when the representation-dependence of the string tension, at some distance scale, is given by the representation of the subgroup.Comment: 24 pages, 14 figures; v2: references added; v3: published version containing some additional introductory discussio

    Spiral phases and two-particle bound states from a systematic low-energy effective theory for magnons, electrons, and holes in an antiferromagnet

    Full text link
    We have constructed a systematic low-energy effective theory for hole- and electron-doped antiferromagnets, where holes reside in momentum space pockets centered at (±π2a,±π2a)(\pm\frac{\pi}{2a},\pm\frac{\pi}{2a}) and where electrons live in pockets centered at (πa,0)(\frac{\pi}{a},0) or (0,πa)(0,\frac{\pi}{a}). The effective theory is used to investigate the magnon-mediated binding between two holes or two electrons in an otherwise undoped system. We derive the one-magnon exchange potential from the effective theory and then solve the corresponding two-quasiparticle Schr\"odinger equation. As a result, we find bound state wave functions that resemble dx2y2d_{x^2-y^2}-like or dxyd_{xy}-like symmetry. We also study possible ground states of lightly doped antiferromagnets.Comment: 2 Pages; Proc. of SCES'07, Housto
    corecore