2 research outputs found

    Using olive mill wastewate to improve performance in producing electricity from domestic wastewater by using single-chamber microbial fuel cell

    Get PDF
    Improving electricity generation from wastewater (DW) by using olive mill wastewater (OMW) was evaluated using single-chamber microbial fuel cells (MFC). Doing so single-chambers air cathode MFCs with platinum anode were fed with domestic wastewater (DW) alone and mixed with OMW at the ratio of 14:1 (w/w). MFCs fed with DW + OMW gave 0.38 V at 1 kO, while power density from polarization curve was of 124.6mW m 2. The process allowed a total reduction of TCOD and BOD5 of 60% and 69%, respectively, recovering the 29% of the coulombic efficiency. The maximum voltage obtained from MFC fed with DW + OMW was 2.9 times higher than that of cell fed with DW. DNA-fingerprinting showed high bacterial diversity for both experiments and the presence on anodes of exoelectrogenic bacteria, such as Geobacter spp. Electrodes selected peculiar consortia and, in particular, anodes of both experiments showed a similar specialization of microbial communities independently by feeding used

    Power generation using a low-cost sulfated zirconium oxide based cathode in single chamber microbial fuel cells

    No full text
    Innovative and cost effective electrode materials to be used as cathodes in lab-scale MFC prototypes were prepared from mixtures of commercial Platinum on Vulcan (Pt/C) and sulfated zirconia (SZrO2). The catalytic activity of the SZrO2 based catalysts towards the oxygen reduction reaction (ORR) was studied by cyclic voltammetry (CV) and linear sweep voltammetry (LSV), showing comparable electrochemical activity between a mixture with one half of the platinum (Pt) amount and another one containing a higher percentage of Pt. Pt and SZrO2 mixtures showed similar catalytic performance compared to simple Pt/C used as a reference. SZrO2 was used as the cathodic catalyst in a microbial fuel cell (MFC) using phosphate buffer solution and sodium acetate as fuel. The maximum current density and power density recorded are 4220 (mA m−2) and 1079 (mW m−2), respectively. These values are better than those obtained using Pt/C (2539 mA m−2 and 662 mW m−2). Good performances were also reached with a platinum-free cathode based on SZrO2 supported on Vulcan (1420 mA m−2 and 536 mW m−2), demonstrating that these catalysts can be used as substitutes for commercial Pt/C. © 2016 Elsevier B.V
    corecore